Solve for [tex]\( x \)[/tex]:

[tex]\[
-2x + 5 \ \textless \ 7
\][/tex]

A. [tex]\( x \ \textgreater \ -1 \)[/tex]

B. [tex]\( x \ \textless \ -1 \)[/tex]

C. [tex]\( x \ \textgreater \ -6 \)[/tex]

D. [tex]\( x \ \textless \ -6 \)[/tex]



Answer :

To solve the inequality [tex]\(-2x + 5 < 7\)[/tex], follow these steps:

1. Subtract 5 from both sides of the inequality to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ -2x + 5 - 5 < 7 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ -2x < 2 \][/tex]

2. Divide both sides by -2. Remember that when you divide or multiply both sides of an inequality by a negative number, you must flip the direction of the inequality sign:
[tex]\[ \frac{-2x}{-2} > \frac{2}{-2} \][/tex]
Simplifying this, we get:
[tex]\[ x > -1 \][/tex]

Therefore, the solution to the inequality [tex]\(-2x + 5 < 7\)[/tex] is:
[tex]\[ x > -1 \][/tex]

Among the given options, the correct answer is:
[tex]\[ x > -1 \][/tex]