Choose the correct conversion for the expression:

[tex]\[ 0.2 \, \text{Kg} - 150 \, \text{g} = ? \][/tex]

\begin{tabular}{|c|c|c|c|c|c|}
\hline
A & B & C & D & E \\
\hline
0.0050 \, \text{Kg} & 50 \, \text{gramos} & 0.50 \, \text{Kg} & 1850 \, \text{gramos} & Ninguna de las anteriores es la verdadera \\
\hline
\end{tabular}



Answer :

To solve the problem [tex]\(0.2 \, kg \times (-150 \, g)\)[/tex], let's break it down step-by-step:

1. First, convert 150 grams to kilograms:
[tex]\[ 150 \, g = \frac{150}{1000} \, kg \][/tex]
[tex]\[ 150 \, g = 0.15 \, kg \][/tex]

2. Next, we need to take into account that the problem requires multiplication by [tex]\(-150 \, g\)[/tex]. Thus, we introduce the negative sign:
[tex]\[ -150 \, g = -0.15 \, kg \][/tex]

3. Now, multiply 0.2 kilograms by -0.15 kilograms:
[tex]\[ 0.2 \, kg \times (-0.15 \, kg) = -0.03 \, kg^2 \][/tex]

4. Since the problem involves mass, let's also convert -0.03 kilograms back to grams:
[tex]\[ -0.03 \, kg = -0.03 \times 1000 \, g \][/tex]
[tex]\[ -0.03 \, kg = -30 \, g \][/tex]

Thus, the result of [tex]\(0.2 \, kg \times (-150 \, g)\)[/tex] is [tex]\(-0.03 \, kg\)[/tex] or [tex]\(-30 \, g\)[/tex].

Given the choices in the table:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{\(0.2 \, kg \cdot -150 \, g = ?\)} & \text{\(0.0050 \, kg\)} & \text{50 \, gramos} & \text{0.50 \, kg} & \text{1850 \, gramos} & \text{Ninguna de las anteriores, es la verdadera} \\ \hline \end{array} \][/tex]

The correct answer is:
[tex]\[ \text{Ninguna de las anteriores, es la verdadera} \][/tex]

as [tex]\(-0.03 \, kg\)[/tex] or [tex]\(-30 \, g\)[/tex] does not match any given option except "Ninguna de las anteriores, es la verdadera".