Simplify [tex]\left(3 x^2-2\right)+\left(5 x^2+5 x-1\right)[/tex]

A. [tex]8 x^2+5 x-3[/tex]
B. [tex]8 x^2+5 x-1[/tex]
C. [tex]2 x^2+5 x-3[/tex]
D. [tex]8 x^2+7 x-1[/tex]



Answer :

To simplify the expression [tex]\(\left(3x^2 - 2\right) + \left(5x^2 + 5x - 1\right)\)[/tex], follow these steps:

1. Distribute and Combine the Like Terms: Combine the coefficients of [tex]\(x^2\)[/tex], the coefficients of [tex]\(x\)[/tex], and the constant terms separately.

[tex]\[ (3x^2 - 2) + (5x^2 + 5x - 1) \][/tex]

2. Combine the [tex]\(x^2\)[/tex] terms:

[tex]\[ 3x^2 + 5x^2 = 8x^2 \][/tex]

3. Combine the [tex]\(x\)[/tex] terms:

[tex]\[ 0 + 5x = 5x \][/tex]

([tex]\(3x^2 - 2\)[/tex] does not have an [tex]\(x\)[/tex] term, so we consider the coefficient of [tex]\(x\)[/tex] to be 0 here.)

4. Combine the constant terms:

[tex]\[ -2 - 1 = -3 \][/tex]

5. Write the simplified expression: Combine all the like terms together:

[tex]\[ 8x^2 + 5x - 3 \][/tex]

Considering these steps, the final simplified expression is:

[tex]\[ 8x^2 + 5x - 3 \][/tex]

Hence, the correct option is:

[tex]\[ \boxed{1} \][/tex]

Other Questions