Multiply [tex]\( -3x^2(6x^2 + 2x - 3) \)[/tex]:

A. [tex]\(-18x^2 - 6x + 9\)[/tex]

B. [tex]\(-18x^4 - 6x^3 + 9x^2\)[/tex]

C. [tex]\(3x^2 - x - 6\)[/tex]

D. [tex]\(3x^4 - x^3 - 6x^2\)[/tex]



Answer :

To solve the multiplication of the polynomials [tex]\(-3x^2\)[/tex] and [tex]\((6x^2 + 2x - 3)\)[/tex], let's work through it step-by-step:

1. Distribute [tex]\(-3x^2\)[/tex] to each term in the polynomial [tex]\((6x^2 + 2x - 3)\)[/tex].

We will multiply [tex]\(-3x^2\)[/tex] by each of the terms in the polynomial individually:

[tex]\[ -3x^2 \cdot 6x^2 \][/tex]

[tex]\[ -3x^2 \cdot 2x \][/tex]

[tex]\[ -3x^2 \cdot (-3) \][/tex]

2. Perform the multiplications.

First, multiply [tex]\(-3x^2\)[/tex] by [tex]\(6x^2\)[/tex]:

[tex]\[ -3x^2 \cdot 6x^2 = -18x^4 \][/tex]

Next, multiply [tex]\(-3x^2\)[/tex] by [tex]\(2x\)[/tex]:

[tex]\[ -3x^2 \cdot 2x = -6x^3 \][/tex]

Finally, multiply [tex]\(-3x^2\)[/tex] by [tex]\(-3\)[/tex]:

[tex]\[ -3x^2 \cdot (-3) = 9x^2 \][/tex]

3. Combine all the terms to write the final expanded polynomial:

[tex]\[ -18x^4 - 6x^3 + 9x^2 \][/tex]

Therefore, after multiplying [tex]\(-3x^2\)[/tex] by [tex]\((6x^2 + 2x - 3)\)[/tex], the resulting polynomial is:

[tex]\[ -18x^4 - 6x^3 + 9x^2 \][/tex]