Answer :
To find the product of [tex]\( 45 \)[/tex] and [tex]\( 99 \)[/tex], we can break it down into smaller, easier-to-handle pieces using the properties of multiplication.
One effective method is to use the distributive property of multiplication over addition. Here's how you can do it step-by-step:
1. Decompose [tex]\( 99 \)[/tex] as [tex]\( 100 - 1 \)[/tex].
2. Rewrite the multiplication problem:
[tex]\[ 45 \times 99 = 45 \times (100 - 1) \][/tex]
3. Apply the distributive property:
[tex]\[ 45 \times 99 = 45 \times 100 - 45 \times 1 \][/tex]
4. Calculate each term separately:
[tex]\[ 45 \times 100 = 4500 \][/tex]
[tex]\[ 45 \times 1 = 45 \][/tex]
5. Subtract the second term from the first term:
[tex]\[ 4500 - 45 = 4455 \][/tex]
Therefore, the product of [tex]\( 45 \times 99 \)[/tex] is [tex]\( 4455 \)[/tex].
One effective method is to use the distributive property of multiplication over addition. Here's how you can do it step-by-step:
1. Decompose [tex]\( 99 \)[/tex] as [tex]\( 100 - 1 \)[/tex].
2. Rewrite the multiplication problem:
[tex]\[ 45 \times 99 = 45 \times (100 - 1) \][/tex]
3. Apply the distributive property:
[tex]\[ 45 \times 99 = 45 \times 100 - 45 \times 1 \][/tex]
4. Calculate each term separately:
[tex]\[ 45 \times 100 = 4500 \][/tex]
[tex]\[ 45 \times 1 = 45 \][/tex]
5. Subtract the second term from the first term:
[tex]\[ 4500 - 45 = 4455 \][/tex]
Therefore, the product of [tex]\( 45 \times 99 \)[/tex] is [tex]\( 4455 \)[/tex].