Answer :
Certainly! Let's solve the given system of linear equations step-by-step:
The system of equations is:
[tex]\[ \left\{ \begin{array}{l} 3x + y = 6 \\ x - 3y = -1 \end{array} \right. \][/tex]
### Step 1: Solve one equation for one variable
Let's solve the second equation for [tex]\(x\)[/tex]:
[tex]\[ x - 3y = -1 \][/tex]
Add [tex]\(3y\)[/tex] to both sides:
[tex]\[ x = 3y - 1 \][/tex]
### Step 2: Substitute this expression into the other equation
Now substitute [tex]\(x = 3y - 1\)[/tex] into the first equation:
[tex]\[ 3(3y - 1) + y = 6 \][/tex]
Distribute the 3:
[tex]\[ 9y - 3 + y = 6 \][/tex]
Combine like terms:
[tex]\[ 10y - 3 = 6 \][/tex]
Add 3 to both sides:
[tex]\[ 10y = 9 \][/tex]
Divide by 10:
[tex]\[ y = \frac{9}{10} \][/tex]
### Step 3: Substitute the value of [tex]\(y\)[/tex] back into the expression for [tex]\(x\)[/tex]
Now that we have [tex]\(y\)[/tex], substitute [tex]\(y = \frac{9}{10}\)[/tex] back into [tex]\(x = 3y - 1\)[/tex]:
[tex]\[ x = 3\left(\frac{9}{10}\right) - 1 \][/tex]
Multiply:
[tex]\[ x = \frac{27}{10} - 1 \][/tex]
Convert 1 to a fraction with the same denominator:
[tex]\[ x = \frac{27}{10} - \frac{10}{10} \][/tex]
Subtract the fractions:
[tex]\[ x = \frac{17}{10} \][/tex]
### Step 4: State the solution as an ordered pair
The solution to the system of equations is:
[tex]\[ \left( x, y \right) = \left( \frac{17}{10}, \frac{9}{10} \right) \][/tex]
Therefore, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations are [tex]\(x = \frac{17}{10}\)[/tex] and [tex]\(y = \frac{9}{10}\)[/tex].
The system of equations is:
[tex]\[ \left\{ \begin{array}{l} 3x + y = 6 \\ x - 3y = -1 \end{array} \right. \][/tex]
### Step 1: Solve one equation for one variable
Let's solve the second equation for [tex]\(x\)[/tex]:
[tex]\[ x - 3y = -1 \][/tex]
Add [tex]\(3y\)[/tex] to both sides:
[tex]\[ x = 3y - 1 \][/tex]
### Step 2: Substitute this expression into the other equation
Now substitute [tex]\(x = 3y - 1\)[/tex] into the first equation:
[tex]\[ 3(3y - 1) + y = 6 \][/tex]
Distribute the 3:
[tex]\[ 9y - 3 + y = 6 \][/tex]
Combine like terms:
[tex]\[ 10y - 3 = 6 \][/tex]
Add 3 to both sides:
[tex]\[ 10y = 9 \][/tex]
Divide by 10:
[tex]\[ y = \frac{9}{10} \][/tex]
### Step 3: Substitute the value of [tex]\(y\)[/tex] back into the expression for [tex]\(x\)[/tex]
Now that we have [tex]\(y\)[/tex], substitute [tex]\(y = \frac{9}{10}\)[/tex] back into [tex]\(x = 3y - 1\)[/tex]:
[tex]\[ x = 3\left(\frac{9}{10}\right) - 1 \][/tex]
Multiply:
[tex]\[ x = \frac{27}{10} - 1 \][/tex]
Convert 1 to a fraction with the same denominator:
[tex]\[ x = \frac{27}{10} - \frac{10}{10} \][/tex]
Subtract the fractions:
[tex]\[ x = \frac{17}{10} \][/tex]
### Step 4: State the solution as an ordered pair
The solution to the system of equations is:
[tex]\[ \left( x, y \right) = \left( \frac{17}{10}, \frac{9}{10} \right) \][/tex]
Therefore, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations are [tex]\(x = \frac{17}{10}\)[/tex] and [tex]\(y = \frac{9}{10}\)[/tex].