Answer :

Certainly! Let's solve the given system of linear equations step-by-step:

The system of equations is:
[tex]\[ \left\{ \begin{array}{l} 3x + y = 6 \\ x - 3y = -1 \end{array} \right. \][/tex]

### Step 1: Solve one equation for one variable

Let's solve the second equation for [tex]\(x\)[/tex]:

[tex]\[ x - 3y = -1 \][/tex]

Add [tex]\(3y\)[/tex] to both sides:

[tex]\[ x = 3y - 1 \][/tex]

### Step 2: Substitute this expression into the other equation

Now substitute [tex]\(x = 3y - 1\)[/tex] into the first equation:

[tex]\[ 3(3y - 1) + y = 6 \][/tex]

Distribute the 3:

[tex]\[ 9y - 3 + y = 6 \][/tex]

Combine like terms:

[tex]\[ 10y - 3 = 6 \][/tex]

Add 3 to both sides:

[tex]\[ 10y = 9 \][/tex]

Divide by 10:

[tex]\[ y = \frac{9}{10} \][/tex]

### Step 3: Substitute the value of [tex]\(y\)[/tex] back into the expression for [tex]\(x\)[/tex]

Now that we have [tex]\(y\)[/tex], substitute [tex]\(y = \frac{9}{10}\)[/tex] back into [tex]\(x = 3y - 1\)[/tex]:

[tex]\[ x = 3\left(\frac{9}{10}\right) - 1 \][/tex]

Multiply:

[tex]\[ x = \frac{27}{10} - 1 \][/tex]

Convert 1 to a fraction with the same denominator:

[tex]\[ x = \frac{27}{10} - \frac{10}{10} \][/tex]

Subtract the fractions:

[tex]\[ x = \frac{17}{10} \][/tex]

### Step 4: State the solution as an ordered pair

The solution to the system of equations is:

[tex]\[ \left( x, y \right) = \left( \frac{17}{10}, \frac{9}{10} \right) \][/tex]

Therefore, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations are [tex]\(x = \frac{17}{10}\)[/tex] and [tex]\(y = \frac{9}{10}\)[/tex].