Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[ (-4abc)^3 \][/tex]

A. [tex]\(-12a^3b^3c^3\)[/tex]

B. [tex]\(-64a^3b^3c^3\)[/tex]

C. [tex]\(64a^3b^3c^3\)[/tex]

D. [tex]\(12a^3bc\)[/tex]



Answer :

To determine the expression equivalent to [tex]\((-4abc)^3\)[/tex], we will use the properties of exponents and multiplication.

We start with the expression:
[tex]\[ (-4abc)^3 \][/tex]

Firstly, recognize that raising a product to a power means raising each factor in the product to that power. In this case, we have:
[tex]\[ (-4abc)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 \][/tex]

Now let's handle each component separately:

1. Evaluate [tex]\((-4)^3\)[/tex]:
[tex]\[ (-4)^3 = -4 \times -4 \times -4 \][/tex]
[tex]\[ -4 \times -4 = 16 \][/tex]
[tex]\[ 16 \times -4 = -64 \][/tex]
Thus, [tex]\((-4)^3 = -64\)[/tex].

2. Raise each variable to the power of 3:
[tex]\[ a^3, \quad b^3, \quad c^3 \][/tex]

So, combining all of these together, we get:
[tex]\[ (-4abc)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 = -64a^3b^3c^3 \][/tex]

Therefore, the expression equivalent to [tex]\((-4abc)^3\)[/tex] is:
[tex]\[ -64a^3b^3c^3 \][/tex]

Among the given options, the correct answer is:
[tex]\[ -64a^3b^3c^3 \][/tex]

Other Questions