Answer :
To determine the expression equivalent to [tex]\((-4abc)^3\)[/tex], we will use the properties of exponents and multiplication.
We start with the expression:
[tex]\[ (-4abc)^3 \][/tex]
Firstly, recognize that raising a product to a power means raising each factor in the product to that power. In this case, we have:
[tex]\[ (-4abc)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 \][/tex]
Now let's handle each component separately:
1. Evaluate [tex]\((-4)^3\)[/tex]:
[tex]\[ (-4)^3 = -4 \times -4 \times -4 \][/tex]
[tex]\[ -4 \times -4 = 16 \][/tex]
[tex]\[ 16 \times -4 = -64 \][/tex]
Thus, [tex]\((-4)^3 = -64\)[/tex].
2. Raise each variable to the power of 3:
[tex]\[ a^3, \quad b^3, \quad c^3 \][/tex]
So, combining all of these together, we get:
[tex]\[ (-4abc)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 = -64a^3b^3c^3 \][/tex]
Therefore, the expression equivalent to [tex]\((-4abc)^3\)[/tex] is:
[tex]\[ -64a^3b^3c^3 \][/tex]
Among the given options, the correct answer is:
[tex]\[ -64a^3b^3c^3 \][/tex]
We start with the expression:
[tex]\[ (-4abc)^3 \][/tex]
Firstly, recognize that raising a product to a power means raising each factor in the product to that power. In this case, we have:
[tex]\[ (-4abc)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 \][/tex]
Now let's handle each component separately:
1. Evaluate [tex]\((-4)^3\)[/tex]:
[tex]\[ (-4)^3 = -4 \times -4 \times -4 \][/tex]
[tex]\[ -4 \times -4 = 16 \][/tex]
[tex]\[ 16 \times -4 = -64 \][/tex]
Thus, [tex]\((-4)^3 = -64\)[/tex].
2. Raise each variable to the power of 3:
[tex]\[ a^3, \quad b^3, \quad c^3 \][/tex]
So, combining all of these together, we get:
[tex]\[ (-4abc)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 = -64a^3b^3c^3 \][/tex]
Therefore, the expression equivalent to [tex]\((-4abc)^3\)[/tex] is:
[tex]\[ -64a^3b^3c^3 \][/tex]
Among the given options, the correct answer is:
[tex]\[ -64a^3b^3c^3 \][/tex]