Simplify: [tex]\frac{x^{-8}}{-11 x^7}[/tex]

A. [tex]-\frac{1}{11 z}[/tex]
B. [tex]-\frac{2^{* 3}}{11}[/tex]
C. [tex]-\frac{z}{11}[/tex]
D. [tex]-\frac{1}{11 x^{15}}[/tex]



Answer :

To simplify the given expression [tex]\(\frac{x^{-8}}{-11 x^7}\)[/tex], follow these steps:

1. Rewrite the expression by using the properties of exponents: Recall that [tex]\( a^{-b} = \frac{1}{a^b} \)[/tex] and [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]. The original expression can be rearranged as follows:

[tex]\[ \frac{x^{-8}}{-11 x^7} = \frac{x^{-8}}{(-11) \cdot x^7} \][/tex]

2. Combine the exponents: Since exponents with the same base in the numerator and denominator can be subtracted, we have:

[tex]\[ x^{-8 - 7} = x^{-15} \][/tex]

This simplifies our expression to:

[tex]\[ \frac{1}{-11 x^{15}} \][/tex]

3. Simplify the overall expression: Observing the sign and coefficient, we recognize that the negative sign can simply be taken to the front of the fraction:

[tex]\[ -\frac{1}{11 x^{15}} \][/tex]

Hence, the simplified form of the given expression [tex]\(\frac{x^{-8}}{-11 x^7}\)[/tex] is:

[tex]\[ -\frac{1}{11 x^{15}} \][/tex]

So, the correct answer from the given options is:

[tex]\(\boxed{-\frac{1}{11 x^{15}}}\)[/tex].