Determine [tex]$f(-3)$[/tex] for [tex]f(x)=\left\{\begin{array}{cc}x^3, & x\ \textless \ -3 \\ 2x^2-9, & -3 \leq x\ \textless \ 4 \\ 5x+4, & x \geq 4\end{array}\right.$[/tex].



Answer :

To determine [tex]\( f(-3) \)[/tex] for the piecewise function

[tex]\[ f(x)=\left\{ \begin{array}{cc} x^3, & x<-3 \\ 2 x^2-9, & -3 \leq x<4 \\ 5 x+4, & x \geq 4 \end{array} \right. \][/tex]

we need to identify which part of the piecewise definition applies to [tex]\( x = -3 \)[/tex].

1. First, we examine the conditions for each piece of the function that determine how [tex]\( f(x) \)[/tex] is defined:
- For [tex]\( x < -3 \)[/tex], [tex]\( f(x) = x^3 \)[/tex].
- For [tex]\( -3 \leq x < 4 \)[/tex], [tex]\( f(x) = 2x^2 - 9 \)[/tex].
- For [tex]\( x \geq 4 \)[/tex], [tex]\( f(x) = 5x + 4 \)[/tex].

2. Since [tex]\( -3 \leq -3 < 4 \)[/tex], [tex]\( x = -3 \)[/tex] falls within the second piece of the function: [tex]\( 2x^2 - 9 \)[/tex].

3. Now, we substitute [tex]\( x = -3 \)[/tex] into the function that applies to this interval:

[tex]\[ f(-3) = 2(-3)^2 - 9 \][/tex]

4. Calculate the expression inside the brackets first:

[tex]\[ (-3)^2 = 9 \][/tex]

5. Multiply by 2:

[tex]\[ 2 \times 9 = 18 \][/tex]

6. Subtract 9 from 18:

[tex]\[ 18 - 9 = 9 \][/tex]

Therefore, the value of [tex]\( f(-3) \)[/tex] is [tex]\( 9 \)[/tex].

Thus, [tex]\( f(-3) = 9 \)[/tex].