Simplify [tex]$5x\sqrt{3x} - 2x\sqrt{3x} - x\sqrt{3x}$[/tex].

A. [tex]$3x\sqrt{6x^3}$[/tex]
B. [tex][tex]$3x\sqrt{3x}$[/tex][/tex]
C. [tex]$2x\sqrt{9x}$[/tex]
D. [tex]$2x\sqrt{3x}$[/tex]



Answer :

To simplify the given expression [tex]\( 5x\sqrt{3x} - 2x\sqrt{3x} - x\sqrt{3x} \)[/tex], let's proceed step-by-step:

1. Identify Like Terms:
Notice that all terms in the expression contain [tex]\( x\sqrt{3x} \)[/tex]. Therefore, they can be combined by factoring [tex]\( x\sqrt{3x} \)[/tex] out.

2. Combine the Coefficients:
- The first term is [tex]\( 5x\sqrt{3x} \)[/tex]. The coefficient here is 5.
- The second term is [tex]\( -2x\sqrt{3x} \)[/tex]. The coefficient here is -2.
- The third term is [tex]\( -x\sqrt{3x} \)[/tex]. The coefficient here is -1 (since [tex]\( x\sqrt{3x} \)[/tex] is equivalent to [tex]\( 1 \cdot x\sqrt{3x} \)[/tex]).

Combine the coefficients:
[tex]\[ 5 - 2 - 1 \][/tex]

3. Calculate the Sum of Coefficients:
[tex]\[ 5 - 2 = 3 \][/tex]
[tex]\[ 3 - 1 = 2 \][/tex]

4. Rewrite the Expression:
Now substitute the combined coefficient back into the expression [tex]\( x\sqrt{3x} \)[/tex]:

[tex]\[ (5 - 2 - 1)x\sqrt{3x} = 2x\sqrt{3x} \][/tex]

Therefore, the simplified form of the given expression [tex]\( 5x\sqrt{3x} - 2x\sqrt{3x} - x\sqrt{3x} \)[/tex] is [tex]\( \boxed{2x\sqrt{3x}} \)[/tex].