Solve the quadratic equation [tex]x^2+3x+1=0[/tex].

A. [tex]x=\frac{-3 \pm \sqrt{29} i}{2}[/tex]
B. [tex]x=\frac{-3 \pm \sqrt{29}}{2}[/tex]
C. [tex]x=\frac{\pm 3 \sqrt{11 i}}{2}[/tex]
D. [tex]x=\frac{-3 \pm \sqrt{5}}{2}[/tex]



Answer :

To solve the quadratic equation [tex]\(x^2 + 3x + 1 = 0\)[/tex], we'll use the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, [tex]\(a = 1\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 1\)[/tex]. Now, let's follow the steps carefully:

1. Calculate the Discriminant:

The discriminant [tex]\(D\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:

[tex]\[ D = b^2 - 4ac \][/tex]

Substitute the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 1\)[/tex] into the discriminant formula:

[tex]\[ D = 3^2 - 4 \cdot 1 \cdot 1 \][/tex]

[tex]\[ D = 9 - 4 \][/tex]

[tex]\[ D = 5 \][/tex]

2. Calculate the Roots:

Next, we substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and the discriminant [tex]\(D\)[/tex] into the quadratic formula:

[tex]\[ x = \frac{-3 \pm \sqrt{5}}{2} \][/tex]

This gives us the two solutions:

[tex]\[ x_1 = \frac{-3 + \sqrt{5}}{2} \][/tex]

and

[tex]\[ x_2 = \frac{-3 - \sqrt{5}}{2} \][/tex]

3. Evaluate the Roots:

To get the numerical values of the roots, we compute:

[tex]\[ x_1 = \frac{-3 + \sqrt{5}}{2} \approx -0.3819660112501051 \][/tex]

and

[tex]\[ x_2 = \frac{-3 - \sqrt{5}}{2} \approx -2.618033988749895 \][/tex]

Thus, the quadratic equation [tex]\(x^2 + 3x + 1 = 0\)[/tex] has the following solutions:

[tex]\[ x = \frac{-3 \pm \sqrt{5}}{2} \][/tex]

Given the answer options, the correct answer is:

D. [tex]\(x=\frac{-3 \pm \sqrt{5}}{2}\)[/tex]