Answer :
To simplify the expression [tex]\(-6(x - 3)\)[/tex], follow these steps:
1. Identify the Distributive Property: The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. In this case, we will distribute [tex]\(-6\)[/tex] to both [tex]\(x\)[/tex] and [tex]\(-3\)[/tex].
2. Apply the Distributive Property:
[tex]\[ -6(x - 3) = -6 \cdot x + (-6) \cdot (-3) \][/tex]
3. Multiply the terms:
[tex]\[ -6 \cdot x = -6x \][/tex]
[tex]\[ (-6) \cdot (-3) = 18 \][/tex]
Here, multiplying two negative numbers [tex]\(-6\)[/tex] and [tex]\(-3\)[/tex] yields a positive result.
4. Combine the results:
[tex]\[ -6x + 18 \][/tex]
So, the simplified form of the expression [tex]\(-6(x - 3)\)[/tex] is:
[tex]\[ 18 - 6x \][/tex]
1. Identify the Distributive Property: The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. In this case, we will distribute [tex]\(-6\)[/tex] to both [tex]\(x\)[/tex] and [tex]\(-3\)[/tex].
2. Apply the Distributive Property:
[tex]\[ -6(x - 3) = -6 \cdot x + (-6) \cdot (-3) \][/tex]
3. Multiply the terms:
[tex]\[ -6 \cdot x = -6x \][/tex]
[tex]\[ (-6) \cdot (-3) = 18 \][/tex]
Here, multiplying two negative numbers [tex]\(-6\)[/tex] and [tex]\(-3\)[/tex] yields a positive result.
4. Combine the results:
[tex]\[ -6x + 18 \][/tex]
So, the simplified form of the expression [tex]\(-6(x - 3)\)[/tex] is:
[tex]\[ 18 - 6x \][/tex]