\begin{tabular}{|c|c|}
\hline
Red fabric (yd), [tex]$x$[/tex] & Blue fabric (yd), [tex]$y$[/tex] \\
\hline
1 & 27 \\
\hline
2 & 26 \\
\hline
3 & 25 \\
\hline
4 & 24 \\
\hline
\end{tabular}

Sophie is buying fabric to make items for a craft fair. The table shows some combinations of how much of each color fabric she might buy. Which equations model the total yards of fabric Sophie will buy? Check all that apply.

A. [tex]$x + y = 28$[/tex]

B. [tex]$28 + x = y$[/tex]

C. [tex]$x - y = 28$[/tex]

D. [tex]$28 - x = y$[/tex]

E. [tex]$28 - y = x$[/tex]



Answer :

To determine the equations that model the total yards of fabric Sophie will buy, we need to check which equations are satisfied by all the given combinations of [tex]\( x \)[/tex] (red fabric in yards) and [tex]\( y \)[/tex] (blue fabric in yards) provided in the table.

The given combinations are:
[tex]\[ \begin{array}{|c|c|} \hline \text{Red fabric } (x) & \text{Blue fabric } (y) \\ \hline 1 & 27 \\ \hline 2 & 26 \\ \hline 3 & 25 \\ \hline 4 & 24 \\ \hline \end{array} \][/tex]

We will check each equation:

1. Equation: [tex]\( x + y = 28 \)[/tex]

- For [tex]\( x = 1 \)[/tex] and [tex]\( y = 27 \)[/tex]:
[tex]\[ 1 + 27 = 28 \][/tex]
- For [tex]\( x = 2 \)[/tex] and [tex]\( y = 26 \)[/tex]:
[tex]\[ 2 + 26 = 28 \][/tex]
- For [tex]\( x = 3 \)[/tex] and [tex]\( y = 25 \)[/tex]:
[tex]\[ 3 + 25 = 28 \][/tex]
- For [tex]\( x = 4 \)[/tex] and [tex]\( y = 24 \)[/tex]:
[tex]\[ 4 + 24 = 28 \][/tex]

This equation [tex]\( x + y = 28 \)[/tex] is satisfied by all the given pairs.

2. Equation: [tex]\( 28 + x = y \)[/tex]

- For [tex]\( x = 1 \)[/tex] and [tex]\( y = 27 \)[/tex]:
[tex]\[ 28 + 1 = 29 \ (\text{which is not } 27) \][/tex]

This equation [tex]\( 28 + x = y \)[/tex] is not satisfied by the pairs, so it is invalid.

3. Equation: [tex]\( x - y = 28 \)[/tex]

- For [tex]\( x = 1 \)[/tex] and [tex]\( y = 27 \)[/tex]:
[tex]\[ 1 - 27 = -26 \ (\text{which is not } 28) \][/tex]

This equation [tex]\( x - y = 28 \)[/tex] is not satisfied by the pairs, so it is invalid.

4. Equation: [tex]\( 28 - x = y \)[/tex]

- For [tex]\( x = 1 \)[/tex] and [tex]\( y = 27 \)[/tex]:
[tex]\[ 28 - 1 = 27 \][/tex]
- For [tex]\( x = 2 \)[/tex] and [tex]\( y = 26 \)[/tex]:
[tex]\[ 28 - 2 = 26 \][/tex]
- For [tex]\( x = 3 \)[/tex] and [tex]\( y = 25 \)[/tex]:
[tex]\[ 28 - 3 = 25 \][/tex]
- For [tex]\( x = 4 \)[/tex] and [tex]\( y = 24 \)[/tex]:
[tex]\[ 28 - 4 = 24 \][/tex]

This equation [tex]\( 28 - x = y \)[/tex] is satisfied by all the given pairs.

5. Equation: [tex]\( 28 - y = x \)[/tex]

- For [tex]\( x = 1 \)[/tex] and [tex]\( y = 27 \)[/tex]:
[tex]\[ 28 - 27 = 1 \][/tex]
- For [tex]\( x = 2 \)[/tex] and [tex]\( y = 26 \)[/tex]:
[tex]\[ 28 - 26 = 2 \][/tex]
- For [tex]\( x = 3 \)[/tex] and [tex]\( y = 25 \)[/tex]:
[tex]\[ 28 - 25 = 3 \][/tex]
- For [tex]\( x = 4 \)[/tex] and [tex]\( y = 24 \)[/tex]:
[tex]\[ 28 - 24 = 4 \][/tex]

This equation [tex]\( 28 - y = x \)[/tex] is satisfied by all the given pairs.

Therefore, the valid equations that model the total yards of fabric Sophie will buy are:
- [tex]\( x + y = 28 \)[/tex]
- [tex]\( 28 - x = y \)[/tex]
- [tex]\( 28 - y = x \)[/tex]

Thus, the correct checked equations are:
[tex]\[ x + y = 28 \][/tex]
[tex]\[ 28 - x = y \][/tex]
[tex]\[ 28 - y = x \][/tex]