[tex]\(\frac{x}{2} \ \textless \ 7\)[/tex] is equivalent to:

A. [tex]\( x \ \textless \ \frac{7}{2} \)[/tex]

B. [tex]\( x \ \textless \ 14 \)[/tex]

C. [tex]\( x \ \textgreater \ 5 \)[/tex]

D. [tex]\( x \ \textgreater \ 14 \)[/tex]



Answer :

To solve the inequality [tex]\(\frac{x}{2} < 7\)[/tex], follow these steps:

1. Begin with the given inequality:
[tex]\[ \frac{x}{2} < 7 \][/tex]

2. To isolate [tex]\(x\)[/tex], you need to eliminate the fraction. Multiply both sides of the inequality by 2:
[tex]\[ 2 \cdot \frac{x}{2} < 2 \cdot 7 \][/tex]

3. Simplify the left side where the 2's cancel each other out:
[tex]\[ x < 14 \][/tex]

So, the inequality [tex]\(\frac{x}{2} < 7\)[/tex] is equivalent to [tex]\(x < 14\)[/tex]. Therefore, the correct answer is:

B. [tex]\(x < 14\)[/tex]