Choose the correct simplification of the expression [tex]\frac{g^5 h^4}{g^2 h^3}[/tex].

A. [tex]g^3 h[/tex]
B. [tex]g^7 h[/tex]
C. [tex]g^7 h^7[/tex]
D. [tex]\frac{g^3}{h^7}[/tex]



Answer :

Certainly, let's simplify the given expression [tex]\(\frac{g^5 h^4}{g^2 h^3}\)[/tex] step by step.

1. Look at the variables [tex]\(g\)[/tex]:
[tex]\[\frac{g^5}{g^2}\][/tex]

Using the laws of exponents, specifically [tex]\(a^m / a^n = a^{m-n}\)[/tex]:
[tex]\[g^{5-2} = g^3\][/tex]

2. Next, look at the variables [tex]\(h\)[/tex]:
[tex]\[\frac{h^4}{h^3}\][/tex]

Again applying the laws of exponents:
[tex]\[h^{4-3} = h\][/tex]

3. Combine the simplified parts:
[tex]\[\frac{g^5 h^4}{g^2 h^3} = g^3 \cdot h\][/tex]

Given the options:
- [tex]\(g^3 h\)[/tex]
- [tex]\(g^7 h\)[/tex]
- [tex]\(g^7 h^7\)[/tex]
- [tex]\(\frac{g^3}{h^7}\)[/tex]

The correct simplification of the expression [tex]\(\frac{g^5 h^4}{g^2 h^3}\)[/tex] is:
[tex]\[g^3 h\][/tex]

Thus, the correct answer is:
[tex]\[g^3 h\][/tex]