Answer :

To find the quotient of [tex]\(2 \frac{2}{3} \div \frac{1}{4}\)[/tex], follow these steps:

1. Convert the mixed number to an improper fraction:

The mixed number [tex]\(2 \frac{2}{3}\)[/tex] can be converted to an improper fraction. To do this, multiply the whole number part by the denominator of the fractional part, then add the numerator:
[tex]\[ 2 \frac{2}{3} = \frac{(2 \times 3) + 2}{3} = \frac{6 + 2}{3} = \frac{8}{3} \][/tex]

2. Set up the division problem:

Now, we need to divide [tex]\(\frac{8}{3}\)[/tex] by [tex]\(\frac{1}{4}\)[/tex].

3. Convert the division to multiplication using the reciprocal:

When you divide by a fraction, you can multiply by its reciprocal. The reciprocal of [tex]\(\frac{1}{4}\)[/tex] is [tex]\(\frac{4}{1}\)[/tex]:
[tex]\[ \frac{8}{3} \div \frac{1}{4} = \frac{8}{3} \times \frac{4}{1} \][/tex]

4. Multiply the fractions:

Multiply the numerators together and the denominators together:
[tex]\[ \frac{8 \times 4}{3 \times 1} = \frac{32}{3} \][/tex]

5. Convert the improper fraction back to a mixed number:

Divide the numerator by the denominator to find the whole number part, and the remainder will be the numerator of the fractional part:
[tex]\[ 32 \div 3 = 10 \text{ remainder } 2 \][/tex]
Thus,
[tex]\[ \frac{32}{3} = 10 \frac{2}{3} \][/tex]

Therefore, the quotient of [tex]\(2 \frac{2}{3} \div \frac{1}{4}\)[/tex] is [tex]\(10 \frac{2}{3}\)[/tex]. The whole number part of the mixed number is [tex]\(10\)[/tex], which is the answer in simplest form.