Solve by completing the square.

[tex]\[10x = 5x^2 - 1\][/tex]

A. [tex]\[x=\frac{-5 \pm 2 \sqrt{5}}{5}\][/tex]

B. [tex]\[x=\frac{5 \pm \sqrt{30}}{5}\][/tex]

C. [tex]\[x=\frac{-5 \pm \sqrt{30}}{5}\][/tex]

D. [tex]\[x=\frac{5 \pm 2 \sqrt{5}}{5}\][/tex]



Answer :

To solve the quadratic equation [tex]\(10x = 5x^2 - 1\)[/tex] by completing the square, follow these steps:

1. Rewrite the equation in standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 5x^2 - 10x - 1 = 0 \][/tex]

2. Divide the entire equation by the coefficient of [tex]\(x^2\)[/tex] (which is 5), to make the coefficient of [tex]\(x^2\)[/tex] equal to 1:
[tex]\[ x^2 - 2x - \frac{1}{5} = 0 \][/tex]

3. Isolate the constant term on the right side of the equation:
[tex]\[ x^2 - 2x = \frac{1}{5} \][/tex]

4. Complete the square on the left side of the equation:
- Take the coefficient of [tex]\(x\)[/tex] (which is -2), divide it by 2, and square it:
[tex]\[ \left(\frac{-2}{2}\right)^2 = 1 \][/tex]
- Add and subtract this square inside the equation:
[tex]\[ x^2 - 2x + 1 - 1 = \frac{1}{5} \][/tex]
[tex]\[ (x - 1)^2 - 1 = \frac{1}{5} \][/tex]
- Rearrange it to balance the equation:
[tex]\[ (x - 1)^2 = \frac{1}{5} + 1 \][/tex]
[tex]\[ (x - 1)^2 = \frac{1}{5} + \frac{5}{5} \][/tex]
[tex]\[ (x - 1)^2 = \frac{6}{5} \][/tex]

5. Solve for [tex]\(x - 1\)[/tex] by taking the square root of both sides:
[tex]\[ x - 1 = \pm \sqrt{\frac{6}{5}} \][/tex]
- This can be simplified to:
[tex]\[ x - 1 = \pm \frac{\sqrt{6}}{\sqrt{5}} \][/tex]
[tex]\[ x - 1 = \pm \frac{\sqrt{30}}{5} \][/tex]

- Thus, [tex]\(x\)[/tex] is:
[tex]\[ x = 1 \pm \frac{\sqrt{30}}{5} \][/tex]

6. Write the solutions in the standard form:
[tex]\[ x = \frac{5 \pm \sqrt{30}}{5} \][/tex]

So, the correct answer is:

B. [tex]\( x = \frac{5 \pm \sqrt{30}}{5} \)[/tex]