Sure! Let's complete the numerical pattern by following the rule of adding [tex]\(\frac{1}{2}\)[/tex] starting from 0.
We can do this step by step:
1. Start with 0.
2. Add [tex]\(\frac{1}{2}\)[/tex] to the previous number (0). So, [tex]\(0 + \frac{1}{2} = 0.5\)[/tex].
3. Add [tex]\(\frac{1}{2}\)[/tex] to the previous number (0.5). So, [tex]\(0.5 + \frac{1}{2} = 1.0\)[/tex].
4. Add [tex]\(\frac{1}{2}\)[/tex] to the previous number (1.0). So, [tex]\(1.0 + \frac{1}{2} = 1.5\)[/tex].
5. Add [tex]\(\frac{1}{2}\)[/tex] to the previous number (1.5). So, [tex]\(1.5 + \frac{1}{2} = 2.0\)[/tex].
6. Add [tex]\(\frac{1}{2}\)[/tex] to the previous number (2.0). So, [tex]\(2.0 + \frac{1}{2} = 2.5\)[/tex].
Therefore, the completed numerical pattern is:
[tex]\[ 0, \quad 0.5, \quad 1.0, \quad 1.5, \quad 2.0, \quad 2.5 \][/tex]
So, the sequence is: [tex]\( 0, \ 0.5, \ 1.0, \ 1.5, \ 2.0, \ 2.5 \)[/tex].