Answer :
Let's match each pair of equivalent expressions step-by-step:
1. Consider the first expression on the left side:
[tex]\[ (-14 + \frac{3}{2} b) - (1 + \frac{8}{2} b) \][/tex]
This simplifies to:
[tex]\[ -14 + \frac{3}{2} b - 1 - 4b = -15 - \frac{5}{2} b \][/tex]
Therefore, the equivalent expression is:
[tex]\[ -15 - \frac{5}{2} b \][/tex]
2. Consider the second expression on the left side:
[tex]\[ (5 + 2b) + (2b + \frac{3}{2}) \][/tex]
This simplifies to:
[tex]\[ 5 + 2b + 2b + \frac{3}{2} = 4b + 6.5 \][/tex]
Therefore, the equivalent expression is:
[tex]\[ 4b + \frac{13}{2} \][/tex]
3. Consider the third expression on the left side:
[tex]\[ (\frac{7}{2} b - 3) - (8 + 6b) \][/tex]
This simplifies to:
[tex]\[ \frac{7}{2} b - 3 - 8 - 6b = -\frac{5}{2} b - 11 \][/tex]
Therefore, the equivalent expression is:
[tex]\[ -\frac{5}{2} b - 11 \][/tex]
4. Consider the fourth expression on the left side:
[tex]\[ (-10 + b) + (7b - 5) \][/tex]
This simplifies to:
[tex]\[ -10 + b + 7b - 5 = 8b - 15 \][/tex]
Therefore, the equivalent expression is:
[tex]\[ 8b - 15 \][/tex]
Now, let's match these pairs of equivalent expressions:
[tex]\[ \begin{array}{l} \left(-14+\frac{3}{2} b\right)-\left(1+\frac{8}{2} b\right) \\ \left(5+2 b\right)+\left(2 b+\frac{3}{2}\right) \\ \left(\frac{7}{2} b-3\right)-(8+6 b) \\ (-10+b)+(7 b-5) \\ \end{array} \][/tex]
[tex]\[ \begin{array}{c} \longleftrightarrow \\ \longleftrightarrow \\ \longleftrightarrow \\ \longleftrightarrow \\ \end{array} \][/tex]
[tex]\[ \begin{array}{r} -15-\frac{5}{2} b \\ 4 b+\frac{13}{2} \\ -\frac{5}{2} b-11 \\ 8 b-15 \\ \end{array} \][/tex]
1. Consider the first expression on the left side:
[tex]\[ (-14 + \frac{3}{2} b) - (1 + \frac{8}{2} b) \][/tex]
This simplifies to:
[tex]\[ -14 + \frac{3}{2} b - 1 - 4b = -15 - \frac{5}{2} b \][/tex]
Therefore, the equivalent expression is:
[tex]\[ -15 - \frac{5}{2} b \][/tex]
2. Consider the second expression on the left side:
[tex]\[ (5 + 2b) + (2b + \frac{3}{2}) \][/tex]
This simplifies to:
[tex]\[ 5 + 2b + 2b + \frac{3}{2} = 4b + 6.5 \][/tex]
Therefore, the equivalent expression is:
[tex]\[ 4b + \frac{13}{2} \][/tex]
3. Consider the third expression on the left side:
[tex]\[ (\frac{7}{2} b - 3) - (8 + 6b) \][/tex]
This simplifies to:
[tex]\[ \frac{7}{2} b - 3 - 8 - 6b = -\frac{5}{2} b - 11 \][/tex]
Therefore, the equivalent expression is:
[tex]\[ -\frac{5}{2} b - 11 \][/tex]
4. Consider the fourth expression on the left side:
[tex]\[ (-10 + b) + (7b - 5) \][/tex]
This simplifies to:
[tex]\[ -10 + b + 7b - 5 = 8b - 15 \][/tex]
Therefore, the equivalent expression is:
[tex]\[ 8b - 15 \][/tex]
Now, let's match these pairs of equivalent expressions:
[tex]\[ \begin{array}{l} \left(-14+\frac{3}{2} b\right)-\left(1+\frac{8}{2} b\right) \\ \left(5+2 b\right)+\left(2 b+\frac{3}{2}\right) \\ \left(\frac{7}{2} b-3\right)-(8+6 b) \\ (-10+b)+(7 b-5) \\ \end{array} \][/tex]
[tex]\[ \begin{array}{c} \longleftrightarrow \\ \longleftrightarrow \\ \longleftrightarrow \\ \longleftrightarrow \\ \end{array} \][/tex]
[tex]\[ \begin{array}{r} -15-\frac{5}{2} b \\ 4 b+\frac{13}{2} \\ -\frac{5}{2} b-11 \\ 8 b-15 \\ \end{array} \][/tex]