Answer :
Given the function [tex]\( H(s) = 0.003s^2 + 0.07s - 0.027 \)[/tex], we need to find the average rate of change in horsepower per unit speed as the speed increases from 80 mph to 100 mph.
### Step-by-Step Solution
1. Evaluate [tex]\( H(s) \)[/tex] at [tex]\( s = 80 \)[/tex] mph:
[tex]\[ H(80) = 0.003 \times 80^2 + 0.07 \times 80 - 0.027 \][/tex]
2. Calculate [tex]\( 80^2 \)[/tex]:
[tex]\[ 80^2 = 6400 \][/tex]
3. Substitute [tex]\( 6400 \)[/tex] and other values into the function and simplify:
[tex]\[ H(80) = 0.003 \times 6400 + 0.07 \times 80 - 0.027 \][/tex]
[tex]\[ H(80) = 19.2 + 5.6 - 0.027 \][/tex]
[tex]\[ H(80) = 24.773 \][/tex]
4. Evaluate [tex]\( H(s) \)[/tex] at [tex]\( s = 100 \)[/tex] mph:
[tex]\[ H(100) = 0.003 \times 100^2 + 0.07 \times 100 - 0.027 \][/tex]
5. Calculate [tex]\( 100^2 \)[/tex]:
[tex]\[ 100^2 = 10000 \][/tex]
6. Substitute [tex]\( 10000 \)[/tex] and other values into the function and simplify:
[tex]\[ H(100) = 0.003 \times 10000 + 0.07 \times 100 - 0.027 \][/tex]
[tex]\[ H(100) = 30 + 7 - 0.027 \][/tex]
[tex]\[ H(100) = 36.973 \][/tex]
7. Calculate the average rate of change in horsepower per unit speed:
[tex]\[ \text{Average Rate of Change} = \frac{H(100) - H(80)}{100 - 80} \][/tex]
[tex]\[ \text{Average Rate of Change} = \frac{36.973 - 24.773}{20} \][/tex]
[tex]\[ \text{Average Rate of Change} = \frac{12.2}{20} \][/tex]
[tex]\[ \text{Average Rate of Change} = 0.61 \][/tex]
Thus, the average rate of change in horsepower per unit speed when the racecar increases its speed from 80 mph to 100 mph is [tex]\( 0.61 \)[/tex] horsepower per mph.
So the correct answer is:
[tex]\[ \boxed{0.61} \][/tex]
### Step-by-Step Solution
1. Evaluate [tex]\( H(s) \)[/tex] at [tex]\( s = 80 \)[/tex] mph:
[tex]\[ H(80) = 0.003 \times 80^2 + 0.07 \times 80 - 0.027 \][/tex]
2. Calculate [tex]\( 80^2 \)[/tex]:
[tex]\[ 80^2 = 6400 \][/tex]
3. Substitute [tex]\( 6400 \)[/tex] and other values into the function and simplify:
[tex]\[ H(80) = 0.003 \times 6400 + 0.07 \times 80 - 0.027 \][/tex]
[tex]\[ H(80) = 19.2 + 5.6 - 0.027 \][/tex]
[tex]\[ H(80) = 24.773 \][/tex]
4. Evaluate [tex]\( H(s) \)[/tex] at [tex]\( s = 100 \)[/tex] mph:
[tex]\[ H(100) = 0.003 \times 100^2 + 0.07 \times 100 - 0.027 \][/tex]
5. Calculate [tex]\( 100^2 \)[/tex]:
[tex]\[ 100^2 = 10000 \][/tex]
6. Substitute [tex]\( 10000 \)[/tex] and other values into the function and simplify:
[tex]\[ H(100) = 0.003 \times 10000 + 0.07 \times 100 - 0.027 \][/tex]
[tex]\[ H(100) = 30 + 7 - 0.027 \][/tex]
[tex]\[ H(100) = 36.973 \][/tex]
7. Calculate the average rate of change in horsepower per unit speed:
[tex]\[ \text{Average Rate of Change} = \frac{H(100) - H(80)}{100 - 80} \][/tex]
[tex]\[ \text{Average Rate of Change} = \frac{36.973 - 24.773}{20} \][/tex]
[tex]\[ \text{Average Rate of Change} = \frac{12.2}{20} \][/tex]
[tex]\[ \text{Average Rate of Change} = 0.61 \][/tex]
Thus, the average rate of change in horsepower per unit speed when the racecar increases its speed from 80 mph to 100 mph is [tex]\( 0.61 \)[/tex] horsepower per mph.
So the correct answer is:
[tex]\[ \boxed{0.61} \][/tex]