Answer :

To determine your final coordinates after the movements, we'll break the problem down into two steps: moving down and moving left.

1. Starting Coordinates: You start at the coordinates [tex]\((3, -3)\)[/tex].

2. Move Down:
- Moving down affects the y-coordinate.
- Starting at [tex]\(y = -3\)[/tex], if you move down 1 unit, the new y-coordinate will be:
[tex]\[ -3 - 1 = -4 \][/tex]
- So after moving down, the coordinates are [tex]\((3, -4)\)[/tex].

3. Move Left:
- Moving left affects the x-coordinate.
- Starting at [tex]\(x = 3\)[/tex], if you move left 6 units, the new x-coordinate will be:
[tex]\[ 3 - 6 = -3 \][/tex]
- So after moving left, the coordinates are [tex]\((-3, -4)\)[/tex].

By completing these two steps, you end at the coordinates [tex]\((-3, -4)\)[/tex].

Thus, after moving down 1 unit and left 6 units from [tex]\((3, -3)\)[/tex], your final coordinates are [tex]\((-3, -4)\)[/tex].