What is the axis of symmetry of [tex]$h(x)=-2x^2+12x-3$[/tex]?

A. [tex]$x=-15$[/tex]
B. [tex][tex]$x=-3$[/tex][/tex]
C. [tex]$x=3$[/tex]
D. [tex]$x=15$[/tex]



Answer :

To determine the axis of symmetry for the quadratic function [tex]\( h(x) = -2x^2 + 12x - 3 \)[/tex], we can use the formula for the axis of symmetry of a quadratic function given by:

[tex]\[ x = -\frac{b}{2a} \][/tex]

Here, [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are the coefficients of the quadratic function in the standard form [tex]\( ax^2 + bx + c \)[/tex]. For [tex]\( h(x) = -2x^2 + 12x - 3 \)[/tex], we identify the coefficients as follows:
- [tex]\( a = -2 \)[/tex]
- [tex]\( b = 12 \)[/tex]
- [tex]\( c = -3 \)[/tex]

Substitute these values into the formula:

[tex]\[ x = -\frac{b}{2a} \][/tex]
[tex]\[ x = -\frac{12}{2(-2)} \][/tex]
[tex]\[ x = -\frac{12}{-4} \][/tex]
[tex]\[ x = 3 \][/tex]

Therefore, the axis of symmetry for the quadratic function [tex]\( h(x) = -2x^2 + 12x - 3 \)[/tex] is [tex]\( x = 3 \)[/tex].

From the provided options:
- [tex]\( x = -15 \)[/tex]
- [tex]\( x = -3 \)[/tex]
- [tex]\( x = 3 \)[/tex]
- [tex]\( x = 15 \)[/tex]

The correct choice is [tex]\( x = 3 \)[/tex].