Answer :
To determine the profit that the pizza parlor can expect if it sells 275 pizzas, we can use the given linear regression equation [tex]\( y = 2.009x - 37.131 \)[/tex], where:
- [tex]\( y \)[/tex] is the profit in dollars,
- [tex]\( x \)[/tex] is the number of pizzas sold.
We need to find [tex]\( y \)[/tex] when [tex]\( x = 275 \)[/tex].
1. Substitute [tex]\( x = 275 \)[/tex] into the equation:
[tex]\[ y = 2.009 \times 275 - 37.131 \][/tex]
2. Calculate the product of [tex]\( 2.009 \)[/tex] and [tex]\( 275 \)[/tex]:
[tex]\[ 2.009 \times 275 = 552.475 \][/tex]
3. Subtract [tex]\( 37.131 \)[/tex] from [tex]\( 552.475 \)[/tex]:
[tex]\[ 552.475 - 37.131 = 515.344 \][/tex]
Therefore, the profit the pizza parlor can expect if it sells 275 pizzas is approximately \[tex]$515. The closest answer choice to our calculation is: D. \(\$[/tex] 515\)
- [tex]\( y \)[/tex] is the profit in dollars,
- [tex]\( x \)[/tex] is the number of pizzas sold.
We need to find [tex]\( y \)[/tex] when [tex]\( x = 275 \)[/tex].
1. Substitute [tex]\( x = 275 \)[/tex] into the equation:
[tex]\[ y = 2.009 \times 275 - 37.131 \][/tex]
2. Calculate the product of [tex]\( 2.009 \)[/tex] and [tex]\( 275 \)[/tex]:
[tex]\[ 2.009 \times 275 = 552.475 \][/tex]
3. Subtract [tex]\( 37.131 \)[/tex] from [tex]\( 552.475 \)[/tex]:
[tex]\[ 552.475 - 37.131 = 515.344 \][/tex]
Therefore, the profit the pizza parlor can expect if it sells 275 pizzas is approximately \[tex]$515. The closest answer choice to our calculation is: D. \(\$[/tex] 515\)