Drag each label to the correct location in the equation. Not all tiles will be used.

The density of mercury is 13.6 grams per cubic centimeter. Complete the steps for converting [tex]13.6 \, g/cm^3[/tex] to [tex]kg/m^3[/tex].

[tex]\[
1 \, kg = 1,000 \, g \quad 1 \, m^3 = 10^6 \, cm^3
\][/tex]

Labels:
- 13,600
- [tex]10^6[/tex]
- 1,360
- 1 g
- 1 kg
- [tex]1 m^3[/tex]

Equation:
[tex]\[
\frac{13.6 \, g}{cm^3} \times \frac{1 \, kg}{1,000 \, g} \times \frac{10^6 \, cm^3}{1 \, m^3} = \frac{13,600 \, kg}{m^3}
\][/tex]



Answer :

To convert the density of mercury from grams per cubic centimeter (g/cm³) to kilograms per cubic meter (kg/m³), we need to use the given conversion factors: [tex]\(1 kg = 1000 g \)[/tex] and [tex]\(1 m³ = 10^6 cm³\)[/tex].

The steps for this conversion process are as follows:

1. Start with the original density: [tex]\( \frac{13.6 \, g}{cm^3} \)[/tex].
2. Convert grams to kilograms by using the factor [tex]\( \frac{1 \, kg}{1000 \, g} \)[/tex].
3. Convert cubic centimeters to cubic meters by using the factor [tex]\( \frac{10^6 \, cm^3}{1 \, m^3} \)[/tex].

When we apply these conversion factors, the equation becomes:
[tex]\[ \frac{13.6 \, g}{cm^3} \times \frac{1 \, kg}{1000 \, g} \times \frac{10^6 \, cm^3}{1 \, m^3} = \frac{13600 \, kg}{m^3} \][/tex]

Therefore, plugging the appropriate labels into the equation, we get:
[tex]\[ \frac{13.6 \, g}{cm^3} \times \frac{1 \, kg}{1000 \, g} \times \frac{10^6 \, cm^3}{1 \, m^3} = \frac{13600 \, kg}{m^3} \][/tex]