\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Class Interval & [tex]$0-10$[/tex] & [tex]$10-20$[/tex] & [tex]$20-30$[/tex] & [tex]$30-40$[/tex] & [tex]$40-50$[/tex] & \\
\hline
Frequency & 2 & 6 & 5 & 4 & 3 & \\
\hline
\end{tabular}



Answer :

Sure! Let's approach this problem step-by-step to find the total frequency.

We are given a frequency table with different class intervals and their corresponding frequencies. The goal is to determine the total frequency across all the given class intervals.

Here is the table provided:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 & \text{Total Frequency} \\ \hline \text{Frequency} & 2 & 6 & 5 & 4 & 3 & \\ \hline \end{array} \][/tex]

The frequencies given for each class interval are as follows:
- For the interval [tex]\(0-10\)[/tex], the frequency is 2.
- For the interval [tex]\(10-20\)[/tex], the frequency is 6.
- For the interval [tex]\(20-30\)[/tex], the frequency is 5.
- For the interval [tex]\(30-40\)[/tex], the frequency is 4.
- For the interval [tex]\(40-50\)[/tex], the frequency is 3.

To find the total frequency, we simply sum up these frequencies:

[tex]\[ 2 + 6 + 5 + 4 + 3 \][/tex]

Adding these values together step-by-step:
[tex]\[ 2 + 6 = 8 \][/tex]
[tex]\[ 8 + 5 = 13 \][/tex]
[tex]\[ 13 + 4 = 17 \][/tex]
[tex]\[ 17 + 3 = 20 \][/tex]

So, the total frequency is 20.

[tex]\(\boxed{20}\)[/tex]

Thus, the total frequency across all the given class intervals is 20.