Answer :
To solve the expression [tex]\(8 \times 3 + [63 \div \{18 \div 3(9 - 17 + 5 \times 2)\}]\)[/tex], we will break it down into smaller steps, simplifying inside each set of parentheses and brackets from the innermost to the outermost, as follows:
1. Simplify inside the innermost parentheses:
[tex]\[ 9 - 17 + 5 \times 2 \][/tex]
Perform the multiplication first:
[tex]\[ 5 \times 2 = 10 \][/tex]
So the expression becomes:
[tex]\[ 9 - 17 + 10 \][/tex]
2. Simplify the addition and subtraction inside the inner parentheses:
[tex]\[ 9 - 17 + 10 = (9 - 17) + 10 = -8 + 10 = 2 \][/tex]
3. Repeat the simplified term inside the curly braces:
Now we have:
[tex]\[ 18 \div 3(2) \][/tex]
Simplify the multiplication inside the curly braces:
[tex]\[ 3 \times 2 = 6 \][/tex]
So now it reads:
[tex]\[ 18 \div 6 \][/tex]
4. Perform the division:
[tex]\[ 18 \div 6 = 3 \][/tex]
5. Use the result in the outer division within the brackets:
Now we have:
[tex]\[ 63 \div 3 \][/tex]
6. Perform the outer division:
[tex]\[ 63 \div 3 = 21 \][/tex]
7. Finally, complete the initial multiplication and addition:
[tex]\[ 8 \times 3 + 21 \][/tex]
First, do the multiplication:
[tex]\[ 8 \times 3 = 24 \][/tex]
8. Add the result:
[tex]\[ 24 + 21 = 45 \][/tex]
Thus, the final result of the expression [tex]\(8 \times 3 + [63 \div \{18 \div 3(9 - 17 + 5 \times 2)\}]\)[/tex] is [tex]\(\boxed{45}\)[/tex].
1. Simplify inside the innermost parentheses:
[tex]\[ 9 - 17 + 5 \times 2 \][/tex]
Perform the multiplication first:
[tex]\[ 5 \times 2 = 10 \][/tex]
So the expression becomes:
[tex]\[ 9 - 17 + 10 \][/tex]
2. Simplify the addition and subtraction inside the inner parentheses:
[tex]\[ 9 - 17 + 10 = (9 - 17) + 10 = -8 + 10 = 2 \][/tex]
3. Repeat the simplified term inside the curly braces:
Now we have:
[tex]\[ 18 \div 3(2) \][/tex]
Simplify the multiplication inside the curly braces:
[tex]\[ 3 \times 2 = 6 \][/tex]
So now it reads:
[tex]\[ 18 \div 6 \][/tex]
4. Perform the division:
[tex]\[ 18 \div 6 = 3 \][/tex]
5. Use the result in the outer division within the brackets:
Now we have:
[tex]\[ 63 \div 3 \][/tex]
6. Perform the outer division:
[tex]\[ 63 \div 3 = 21 \][/tex]
7. Finally, complete the initial multiplication and addition:
[tex]\[ 8 \times 3 + 21 \][/tex]
First, do the multiplication:
[tex]\[ 8 \times 3 = 24 \][/tex]
8. Add the result:
[tex]\[ 24 + 21 = 45 \][/tex]
Thus, the final result of the expression [tex]\(8 \times 3 + [63 \div \{18 \div 3(9 - 17 + 5 \times 2)\}]\)[/tex] is [tex]\(\boxed{45}\)[/tex].