Answer :

To find the inverse function of the given function [tex]\( f(x) = \frac{x}{2} + 8 \)[/tex], follow these steps:

1. Rewrite the function using a different variable: Let [tex]\( y = f(x) \)[/tex]. This gives us the equation:
[tex]\[ y = \frac{x}{2} + 8 \][/tex]

2. Express [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]: To find the inverse function, we need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]. Start by isolating [tex]\( x \)[/tex] on one side of the equation:
[tex]\[ y = \frac{x}{2} + 8 \][/tex]

3. Subtract 8 from both sides:
[tex]\[ y - 8 = \frac{x}{2} \][/tex]

4. Multiply both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ 2(y - 8) = x \][/tex]

5. Simplify the expression:
[tex]\[ x = 2y - 16 \][/tex]

Since we want the inverse function [tex]\( f^{-1}(x) \)[/tex], we express this result with [tex]\( x \)[/tex] as the input variable and rename [tex]\( y \)[/tex] back to [tex]\( x \)[/tex]:

[tex]\[ f^{-1}(x) = 2x - 16 \][/tex]

Therefore, the inverse function is:
[tex]\[ f^{-1}(x) = 2x - 16 \][/tex]