A faulty thermometer measures the temperature of an object as [tex]28.2^{\circ} C[/tex]. The upper and lower fixed points of the thermometer are [tex]98.4^{\circ} C[/tex] and [tex]1.2^{\circ} C[/tex], respectively. What is the correct temperature of the object?

[tex] \left(29.51^{\circ} C \right) [/tex]



Answer :

Sure, let's carefully work through this problem step-by-step.

### Given Data

1. The temperature measured by the faulty thermometer is [tex]\(28.2^\circ C\)[/tex].
2. The upper fixed point of the faulty thermometer is [tex]\(98.4^\circ C\)[/tex], whereas the correct upper fixed point for Celsius should be [tex]\(100^\circ C\)[/tex].
3. The lower fixed point of the faulty thermometer is [tex]\(1.2^\circ C\)[/tex], whereas the correct lower fixed point for Celsius should be [tex]\(0^\circ C\)[/tex].

### Steps to Find the Correct Temperature

1. Define the correct fixed point values:
- Correct upper fixed point: [tex]\(100^\circ C\)[/tex]
- Correct lower fixed point: [tex]\(0^\circ C\)[/tex]

2. Calculate the slope of the faulty thermometer:
[tex]\[ \text{slope} = \frac{\text{correct upper fixed point} - \text{correct lower fixed point}}{\text{faulty upper fixed point} - \text{faulty lower fixed point}} \][/tex]
[tex]\[ \text{slope} = \frac{100 - 0}{98.4 - 1.2} \][/tex]

3. Substitute the given values:
[tex]\[ \text{slope} = \frac{100}{98.4 - 1.2} = \frac{100}{97.2} \][/tex]

4. Simplify the slope:
[tex]\[ \text{slope} \approx 1.02880658436214 \][/tex]

5. Calculate the correct temperature using the slope and the faulty temperature:
[tex]\[ \text{Correct temperature} = \text{slope} \times (\text{faulty temperature} - \text{faulty lower fixed point}) \][/tex]
[tex]\[ \text{Correct temperature} = 1.02880658436214 \times (28.2 - 1.2) \][/tex]
[tex]\[ \text{Correct temperature} = 1.02880658436214 \times 27.0 \][/tex]

6. Perform the final calculation:
[tex]\[ \text{Correct temperature} \approx 27.77777777777778^\circ C \][/tex]

### Conclusion

The correct temperature of the object is approximately [tex]\(27.78^\circ C\)[/tex].