Combine like terms to create an equivalent expression. Enter any coefficients as simplified proper or improper fractions or integers.

[tex]\[
\frac{11}{12} - \frac{1}{6}q + \frac{5}{6}q - \frac{1}{3}
\][/tex]



Answer :

To simplify and combine like terms in the given expression [tex]\(\frac{11}{12} - \frac{1}{6} q + \frac{5}{6} q - \frac{1}{3}\)[/tex], follow these steps:

1. Identify and separate like terms:
- Constant terms: [tex]\(\frac{11}{12}\)[/tex] and [tex]\(-\frac{1}{3}\)[/tex]
- Terms involving [tex]\(q\)[/tex]: [tex]\(-\frac{1}{6} q\)[/tex] and [tex]\(\frac{5}{6} q\)[/tex]

2. Combine the constant terms:
Convert each constant term to a common denominator to make addition easier.

The least common denominator for [tex]\(\frac{11}{12}\)[/tex] and [tex]\(-\frac{1}{3}\)[/tex] is 12.

[tex]\[ \frac{11}{12} - \frac{1}{3} = \frac{11}{12} - \frac{1 \times 4}{3 \times 4} = \frac{11}{12} - \frac{4}{12} \][/tex]

Now, combine the fractions:

[tex]\[ \frac{11}{12} - \frac{4}{12} = \frac{11 - 4}{12} = \frac{7}{12} \][/tex]

3. Combine the terms involving [tex]\(q\)[/tex]:
Both terms [tex]\(-\frac{1}{6} q\)[/tex] and [tex]\(\frac{5}{6} q\)[/tex] already have the same denominator.

[tex]\[ -\frac{1}{6} q + \frac{5}{6} q \][/tex]

Combine the coefficients:

[tex]\[ -\frac{1}{6} + \frac{5}{6} = \frac{-1 + 5}{6} = \frac{4}{6} = \frac{2}{3} \][/tex]

So, the combined term involving [tex]\(q\)[/tex] is:

[tex]\[ \frac{2}{3} q \][/tex]

4. Combine all simplified terms:
The simplified expression, combining the [tex]\(q\)[/tex] term and the constant term, is:

[tex]\[ \frac{2}{3} q + \frac{7}{12} \][/tex]

Therefore, the equivalent expression after combining like terms is:

[tex]\[ \boxed{\frac{2}{3} q + \frac{7}{12}} \][/tex]