Answer :
Certainly! Let's break down each of these calculations step-by-step:
### (1) Calculate [tex]\( 3.6 \times (-1.5) \)[/tex]
To multiply two numbers where one is positive and the other is negative, the result will be negative.
Therefore:
[tex]\[ 3.6 \times (-1.5) = -5.4 \][/tex]
### (2) Calculate [tex]\( -6 \times 52 \)[/tex]
When multiplying a negative number by a positive number, the result is negative.
So:
[tex]\[ -6 \times 52 = -312 \][/tex]
### (4) Calculate [tex]\( -15 \times (-66) \)[/tex]
Multiplying two negative numbers together gives a positive result.
Hence:
[tex]\[ -15 \times (-66) = 990 \][/tex]
### (5) Calculate [tex]\( -1.9 \times 3.2 \)[/tex]
Here, one number is negative and the other is positive, so the result is negative.
Thus:
[tex]\[ -1.9 \times 3.2 = -6.08 \][/tex]
### (7) Calculate [tex]\( 7 - 0.6 \times (-0.34) \)[/tex]
First, perform the multiplication inside the subtraction. The multiplication of a negative by a positive number gives a negative result, but subtracting a negative is equivalent to addition.
So:
[tex]\[ 0.6 \times (-0.34) = -0.204 \][/tex]
Then, calculate the subtraction:
[tex]\[ 7 - (-0.204) = 7 + 0.204 = 7.204 \][/tex]
### (8) Calculate [tex]\( -2 \times \left( -3 \frac{1}{2} \right) \)[/tex]
First, convert the mixed number [tex]\( -3 \frac{1}{2} \)[/tex] to an improper fraction. [tex]\( -3 \frac{1}{2} \)[/tex] is the same as [tex]\( -3.5 \)[/tex].
Multiplying two negative numbers results in a positive number:
[tex]\[ -2 \times (-3.5) = 7.0 \][/tex]
### Summary of Results
Putting it all together, the results are:
1. [tex]\( 3.6 \times (-1.5) = -5.4 \)[/tex]
2. [tex]\( -6 \times 52 = -312 \)[/tex]
3. [tex]\( -15 \times (-66) = 990 \)[/tex]
4. [tex]\( -1.9 \times 3.2 = -6.08 \)[/tex]
5. [tex]\( 7 - 0.6 \times (-0.34) = 7.204 \)[/tex]
6. [tex]\( -2 \times \left( -3 \frac{1}{2} \right) = 7.0 \)[/tex]
Feel free to ask if you have any further questions!
### (1) Calculate [tex]\( 3.6 \times (-1.5) \)[/tex]
To multiply two numbers where one is positive and the other is negative, the result will be negative.
Therefore:
[tex]\[ 3.6 \times (-1.5) = -5.4 \][/tex]
### (2) Calculate [tex]\( -6 \times 52 \)[/tex]
When multiplying a negative number by a positive number, the result is negative.
So:
[tex]\[ -6 \times 52 = -312 \][/tex]
### (4) Calculate [tex]\( -15 \times (-66) \)[/tex]
Multiplying two negative numbers together gives a positive result.
Hence:
[tex]\[ -15 \times (-66) = 990 \][/tex]
### (5) Calculate [tex]\( -1.9 \times 3.2 \)[/tex]
Here, one number is negative and the other is positive, so the result is negative.
Thus:
[tex]\[ -1.9 \times 3.2 = -6.08 \][/tex]
### (7) Calculate [tex]\( 7 - 0.6 \times (-0.34) \)[/tex]
First, perform the multiplication inside the subtraction. The multiplication of a negative by a positive number gives a negative result, but subtracting a negative is equivalent to addition.
So:
[tex]\[ 0.6 \times (-0.34) = -0.204 \][/tex]
Then, calculate the subtraction:
[tex]\[ 7 - (-0.204) = 7 + 0.204 = 7.204 \][/tex]
### (8) Calculate [tex]\( -2 \times \left( -3 \frac{1}{2} \right) \)[/tex]
First, convert the mixed number [tex]\( -3 \frac{1}{2} \)[/tex] to an improper fraction. [tex]\( -3 \frac{1}{2} \)[/tex] is the same as [tex]\( -3.5 \)[/tex].
Multiplying two negative numbers results in a positive number:
[tex]\[ -2 \times (-3.5) = 7.0 \][/tex]
### Summary of Results
Putting it all together, the results are:
1. [tex]\( 3.6 \times (-1.5) = -5.4 \)[/tex]
2. [tex]\( -6 \times 52 = -312 \)[/tex]
3. [tex]\( -15 \times (-66) = 990 \)[/tex]
4. [tex]\( -1.9 \times 3.2 = -6.08 \)[/tex]
5. [tex]\( 7 - 0.6 \times (-0.34) = 7.204 \)[/tex]
6. [tex]\( -2 \times \left( -3 \frac{1}{2} \right) = 7.0 \)[/tex]
Feel free to ask if you have any further questions!