Answer :
To find the weight of a liquid that fills a 202 milliliter container with a density of [tex]\(0.685 \frac{\text{grams}}{\text{milliliter}}\)[/tex], follow these steps:
1. Identify the volume of the container:
The volume of the container is 202 milliliters.
2. Identify the density of the liquid:
The density of the liquid is [tex]\(0.685 \frac{\text{grams}}{\text{milliliter}}\)[/tex].
3. Calculate the weight of the liquid:
Use the formula for weight, which is:
[tex]\[ \text{Weight} = \text{Volume} \times \text{Density} \][/tex]
Substitute the known values into the formula:
[tex]\[ \text{Weight} = 202 \, \text{ml} \times 0.685 \, \frac{\text{grams}}{\text{ml}} \][/tex]
4. Perform the multiplication:
[tex]\[ \text{Weight} = 202 \times 0.685 = 138.37 \, \text{grams} \][/tex]
5. Round to the nearest hundredth:
The calculated weight is already at the hundredth place, so the weight remains [tex]\(138.37\)[/tex] grams.
The weight of the liquid is:
[tex]\[ \boxed{138.37} \][/tex]
1. Identify the volume of the container:
The volume of the container is 202 milliliters.
2. Identify the density of the liquid:
The density of the liquid is [tex]\(0.685 \frac{\text{grams}}{\text{milliliter}}\)[/tex].
3. Calculate the weight of the liquid:
Use the formula for weight, which is:
[tex]\[ \text{Weight} = \text{Volume} \times \text{Density} \][/tex]
Substitute the known values into the formula:
[tex]\[ \text{Weight} = 202 \, \text{ml} \times 0.685 \, \frac{\text{grams}}{\text{ml}} \][/tex]
4. Perform the multiplication:
[tex]\[ \text{Weight} = 202 \times 0.685 = 138.37 \, \text{grams} \][/tex]
5. Round to the nearest hundredth:
The calculated weight is already at the hundredth place, so the weight remains [tex]\(138.37\)[/tex] grams.
The weight of the liquid is:
[tex]\[ \boxed{138.37} \][/tex]