Properties of Exponents

Simplify the following expressions.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{Original Expression} & \multicolumn{1}{|c|}{Simplified Expression} \\
\hline [tex]$(6x)^3$[/tex] & \\
\hline [tex]$(-2x)^2$[/tex] & \\
\hline [tex]$3x^5 \cdot 2x^7 \cdot 7x^7$[/tex] & \\
\hline [tex]$7(2x)^2$[/tex] & \\
\hline
\end{tabular}



Answer :

Sure, let's simplify each expression step by step:

### 1. [tex]\((6x)^3\)[/tex]

First, let's expand the expression:

[tex]\[ (6x)^3 = 6^3 \cdot x^3 \][/tex]

Next, calculate [tex]\(6^3\)[/tex]:

[tex]\[ 6^3 = 6 \cdot 6 \cdot 6 = 216 \][/tex]

So, the simplified expression is:

[tex]\[ (6x)^3 = 216x^3 \][/tex]

### 2. [tex]\((-2x)^2\)[/tex]

First, let's expand the expression:

[tex]\[ (-2x)^2 = (-2)^2 \cdot x^2 \][/tex]

Next, calculate [tex]\((-2)^2\)[/tex]:

[tex]\[ (-2)^2 = (-2) \cdot (-2) = 4 \][/tex]

So, the simplified expression is:

[tex]\[ (-2x)^2 = 4x^2 \][/tex]

### 3. [tex]\(3x^5 \cdot 2x^7 \cdot 7x^7\)[/tex]

First, let's group the constants and the variables together:

[tex]\[ 3 \cdot 2 \cdot 7 \cdot x^5 \cdot x^7 \cdot x^7 \][/tex]

Next, simplify the constants:

[tex]\[ 3 \cdot 2 \cdot 7 = 42 \][/tex]

Then, use the property of exponents ([tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]):

[tex]\[ x^5 \cdot x^7 \cdot x^7 = x^{5+7+7} = x^{19} \][/tex]

So, the simplified expression is:

[tex]\[ 3x^5 \cdot 2x^7 \cdot 7x^7 = 42x^{19} \][/tex]

### 4. [tex]\(7(2x)^2\)[/tex]

First, let's expand the expression inside the parentheses:

[tex]\[ (2x)^2 = (2x) \cdot (2x) = 2^2 \cdot x^2 \][/tex]

Next, calculate [tex]\(2^2\)[/tex]:

[tex]\[ 2^2 = 4 \][/tex]

So, the expression inside the parentheses becomes:

[tex]\[ (2x)^2 = 4x^2 \][/tex]

Now, multiply by 7:

[tex]\[ 7 \cdot 4x^2 = 28x^2 \][/tex]

So, the simplified expression is:

[tex]\[ 7(2x)^2 = 28x^2 \][/tex]

### Summary
The simplified expressions are as follows:
[tex]\[ \begin{array}{|l|l|} \hline \text{Original Expression} & \text{Simplified Expression} \\ \hline (6x)^3 & 216x^3 \\ \hline (-2x)^2 & 4x^2 \\ \hline 3x^5 \cdot 2x^7 \cdot 7x^7 & 42x^{19} \\ \hline 7(2x)^2 & 28x^2 \\ \hline \end{array} \][/tex]