1. Simplify [tex]$3 y^{-2}$[/tex].

A. [tex]$\frac{3}{y^2}$[/tex]
B. [tex][tex]$3 y^2$[/tex][/tex]
C. This cannot be simplified further.
D. [tex]$9 y^2$[/tex]



Answer :

To simplify the expression [tex]\(3y^{-2}\)[/tex], let's follow these steps:

1. Understand the Expression:
- The given expression is [tex]\(3y^{-2}\)[/tex].

2. Rewrite the Negative Exponent:
- Recall that [tex]\(y^{-2} = \frac{1}{y^2}\)[/tex]. Essentially, a negative exponent indicates the reciprocal of the base raised to the positive of that exponent.
- Therefore, [tex]\(3y^{-2}\)[/tex] can be rewritten as [tex]\(3 \cdot \frac{1}{y^2}\)[/tex].

3. Simplify the Expression:
- Multiply the constants and fractions together:
[tex]\[ 3 \cdot \frac{1}{y^2} = \frac{3}{y^2} \][/tex]

So, the simplified form of [tex]\( 3y^{-2} \)[/tex] is [tex]\( \frac{3}{y^2} \)[/tex].

Therefore, the simplified expression for [tex]\(3y^{-2}\)[/tex] is:
[tex]\[ \frac{3}{y^2} \][/tex]