To simplify the expression [tex]\(3y^{-2}\)[/tex], let's follow these steps:
1. Understand the Expression:
- The given expression is [tex]\(3y^{-2}\)[/tex].
2. Rewrite the Negative Exponent:
- Recall that [tex]\(y^{-2} = \frac{1}{y^2}\)[/tex]. Essentially, a negative exponent indicates the reciprocal of the base raised to the positive of that exponent.
- Therefore, [tex]\(3y^{-2}\)[/tex] can be rewritten as [tex]\(3 \cdot \frac{1}{y^2}\)[/tex].
3. Simplify the Expression:
- Multiply the constants and fractions together:
[tex]\[
3 \cdot \frac{1}{y^2} = \frac{3}{y^2}
\][/tex]
So, the simplified form of [tex]\( 3y^{-2} \)[/tex] is [tex]\( \frac{3}{y^2} \)[/tex].
Therefore, the simplified expression for [tex]\(3y^{-2}\)[/tex] is:
[tex]\[
\frac{3}{y^2}
\][/tex]