Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

Subtracting [tex]$3x^2 + 4x - 5$[/tex] from [tex]$7x^2 + x + 9$[/tex] results in a polynomial. After subtracting [tex][tex]$4x^2 - 3x$[/tex][/tex] from this polynomial, what is the result?



Answer :

Certainly! Let's go through the process step by step to solve the given problem.

We are given two main operations to perform on the polynomials.

1. First Operation: Subtract [tex]\(3x^2 + 4x - 5\)[/tex] from [tex]\(7x^2 + x + 9\)[/tex]
2. Second Operation: Subtract [tex]\(4x^2 - 3x\)[/tex] from the result of the first operation

Let's start with the first operation:

### Step 1: Subtract [tex]\(3x^2 + 4x - 5\)[/tex] from [tex]\(7x^2 + x + 9\)[/tex]
Write down the polynomials:

[tex]\[ 7x^2 + x + 9 \][/tex]
[tex]\[ -(3x^2 + 4x - 5) \][/tex]

To subtract, we change the signs of the second polynomial and then add:

[tex]\[ 7x^2 + x + 9 - (3x^2 + 4x - 5) = 7x^2 + x + 9 - 3x^2 - 4x + 5 \][/tex]

Combine like terms:

[tex]\[ (7x^2 - 3x^2) + (x - 4x) + (9 + 5) \][/tex]
[tex]\[ = 4x^2 - 3x + 14 \][/tex]

So, after the first operation, we are left with the polynomial:

[tex]\[ 4x^2 - 3x + 14 \][/tex]

### Step 2: Subtract [tex]\(4x^2 - 3x\)[/tex] from the result of the first operation:

Write down the polynomials:

[tex]\[ 4x^2 - 3x + 14 \][/tex]
[tex]\[ -(4x^2 - 3x) \][/tex]

Again, change the signs of the second polynomial and then add:

[tex]\[ 4x^2 - 3x + 14 - (4x^2 - 3x) = 4x^2 - 3x + 14 - 4x^2 + 3x \][/tex]

Combine like terms:

[tex]\[ (4x^2 - 4x^2) + (-3x + 3x) + 14 \][/tex]
[tex]\[ = 0 + 0 + 14 \][/tex]
[tex]\[ = 14 \][/tex]

So, after the second operation, we are left with the constant:

[tex]\[ 14 \][/tex]

### Final Results:
- After the first operation: [tex]\(4x^2 - 3x + 14\)[/tex]
- After the second operation: [tex]\(14\)[/tex]

These are the results of the given polynomial operations.