Answer :
Sure! Let's go through the step-by-step process of converting each percentage to a fraction.
1. Convert [tex]\(18 \%\)[/tex]:
[tex]\(18 \% = \frac{18}{100} = 0.18\)[/tex]
2. Convert [tex]\(27 \%\)[/tex]:
[tex]\(27 \% = \frac{27}{100} = 0.27\)[/tex]
3. Convert [tex]\(125 \frac{1}{4} \%\)[/tex]:
First, convert the mixed number to an improper fraction:
[tex]\(125 \frac{1}{4} = 125.25\)[/tex]
Then, convert to a fraction:
[tex]\(125.25 \% = \frac{125.25}{100} = 1.2525\)[/tex]
4. Convert [tex]\(3.15 \%\)[/tex]:
[tex]\(3.15 \% = \frac{3.15}{100} = 0.0315\)[/tex]
5. Convert [tex]\(9 \frac{1}{3} \%\)[/tex]:
First, convert the mixed number to an improper fraction:
[tex]\(9 \frac{1}{3} = 9 + \frac{1}{3} = 9.3333\)[/tex]
Then, convert to a fraction:
[tex]\(9.3333 \% = \frac{9.3333}{100} = 0.09333333333333334\)[/tex]
6. Convert [tex]\(52.5 \%\)[/tex]:
[tex]\(52.5 \% = \frac{52.5}{100} = 0.525\)[/tex]
7. Convert [tex]\(2 \frac{5}{6} \%\)[/tex]:
First, convert the mixed number to an improper fraction:
[tex]\(2 \frac{5}{6} = 2 + \frac{5}{6} = 2.8333\)[/tex]
Then, convert to a fraction:
[tex]\(2.8333 \% = \frac{2.8333}{100} = 0.028333333333333335\)[/tex]
8. Convert [tex]\(6.9 \%\)[/tex]:
[tex]\(6.9 \% = \frac{6.9}{100} = 0.069\)[/tex]
9. Convert [tex]\(0.8 \%\)[/tex]:
[tex]\(0.8 \% = \frac{0.8}{100} = 0.008\)[/tex]
Let's summarize the results:
- [tex]\(18 \% \rightarrow 0.18\)[/tex]
- [tex]\(27 \% \rightarrow 0.27\)[/tex]
- [tex]\(125 \frac{1}{4} \% \rightarrow 1.2525\)[/tex]
- [tex]\(3.15 \% \rightarrow 0.0315\)[/tex]
- [tex]\(9 \frac{1}{3} \% \rightarrow 0.09333333333333334\)[/tex]
- [tex]\(52.5 \% \rightarrow 0.525\)[/tex]
- [tex]\(2 \frac{5}{6} \% \rightarrow 0.028333333333333335\)[/tex]
- [tex]\(6.9 \% \rightarrow 0.069\)[/tex]
- [tex]\(0.8 \% \rightarrow 0.008\)[/tex]
These are the fractions corresponding to each percentage provided in the question.
1. Convert [tex]\(18 \%\)[/tex]:
[tex]\(18 \% = \frac{18}{100} = 0.18\)[/tex]
2. Convert [tex]\(27 \%\)[/tex]:
[tex]\(27 \% = \frac{27}{100} = 0.27\)[/tex]
3. Convert [tex]\(125 \frac{1}{4} \%\)[/tex]:
First, convert the mixed number to an improper fraction:
[tex]\(125 \frac{1}{4} = 125.25\)[/tex]
Then, convert to a fraction:
[tex]\(125.25 \% = \frac{125.25}{100} = 1.2525\)[/tex]
4. Convert [tex]\(3.15 \%\)[/tex]:
[tex]\(3.15 \% = \frac{3.15}{100} = 0.0315\)[/tex]
5. Convert [tex]\(9 \frac{1}{3} \%\)[/tex]:
First, convert the mixed number to an improper fraction:
[tex]\(9 \frac{1}{3} = 9 + \frac{1}{3} = 9.3333\)[/tex]
Then, convert to a fraction:
[tex]\(9.3333 \% = \frac{9.3333}{100} = 0.09333333333333334\)[/tex]
6. Convert [tex]\(52.5 \%\)[/tex]:
[tex]\(52.5 \% = \frac{52.5}{100} = 0.525\)[/tex]
7. Convert [tex]\(2 \frac{5}{6} \%\)[/tex]:
First, convert the mixed number to an improper fraction:
[tex]\(2 \frac{5}{6} = 2 + \frac{5}{6} = 2.8333\)[/tex]
Then, convert to a fraction:
[tex]\(2.8333 \% = \frac{2.8333}{100} = 0.028333333333333335\)[/tex]
8. Convert [tex]\(6.9 \%\)[/tex]:
[tex]\(6.9 \% = \frac{6.9}{100} = 0.069\)[/tex]
9. Convert [tex]\(0.8 \%\)[/tex]:
[tex]\(0.8 \% = \frac{0.8}{100} = 0.008\)[/tex]
Let's summarize the results:
- [tex]\(18 \% \rightarrow 0.18\)[/tex]
- [tex]\(27 \% \rightarrow 0.27\)[/tex]
- [tex]\(125 \frac{1}{4} \% \rightarrow 1.2525\)[/tex]
- [tex]\(3.15 \% \rightarrow 0.0315\)[/tex]
- [tex]\(9 \frac{1}{3} \% \rightarrow 0.09333333333333334\)[/tex]
- [tex]\(52.5 \% \rightarrow 0.525\)[/tex]
- [tex]\(2 \frac{5}{6} \% \rightarrow 0.028333333333333335\)[/tex]
- [tex]\(6.9 \% \rightarrow 0.069\)[/tex]
- [tex]\(0.8 \% \rightarrow 0.008\)[/tex]
These are the fractions corresponding to each percentage provided in the question.