8. Let's express the following expressions in square form.

a) [tex]$x^2+6x+9$[/tex]

b) [tex]$x^2-8x+16$[/tex]

c) [tex][tex]$4a^2+4ab+b^2$[/tex][/tex]

d) [tex]$p^2-6pq+9q^2$[/tex]

e) [tex]$4x^2+12xy+9y^2$[/tex]

f) [tex][tex]$25x^2-40xy+16y^2$[/tex][/tex]

g) [tex]$49a^2-42ab+9b^2$[/tex]

h) [tex]$x^2+2+\frac{1}{x^2}$[/tex]

i) [tex][tex]$4p^2-2+\frac{1}{4p^2}$[/tex][/tex]



Answer :

Certainly! Let's convert each expression into its equivalent square form.

### Part a)
Expression: [tex]\(x^2 + 6x + 9\)[/tex]

Let's find the square form:
[tex]\[ x^2 + 6x + 9 = (x + 3)^2 \][/tex]

### Part b)
Expression: [tex]\(x^2 - 8x + 16\)[/tex]

Let's find the square form:
[tex]\[ x^2 - 8x + 16 = (x - 4)^2 \][/tex]

### Part c)
Expression: [tex]\(4a^2 + 4ab + b^2\)[/tex]

Let's find the square form:
[tex]\[ 4a^2 + 4ab + b^2 = (2a + b)^2 \][/tex]

### Part d)
Expression: [tex]\(p^2 - 6pq + 9q^2\)[/tex]

Let's find the square form:
[tex]\[ p^2 - 6pq + 9q^2 = (p - 3q)^2 \][/tex]

### Part e)
Expression: [tex]\(4x^2 + 12xy + 9y^2\)[/tex]

Let's find the square form:
[tex]\[ 4x^2 + 12xy + 9y^2 = (2x + 3y)^2 \][/tex]

### Part f)
Expression: [tex]\(25x^2 - 40xy + 16y^2\)[/tex]

Let's find the square form:
[tex]\[ 25x^2 - 40xy + 16y^2 = (5x - 4y)^2 \][/tex]

### Part g)
Expression: [tex]\(49a^2 - 42ab + 9b^2\)[/tex]

Let's find the square form:
[tex]\[ 49a^2 - 42ab + 9b^2 = (7a - 3b)^2 \][/tex]

### Part h)
Expression: [tex]\(x^2 + 2 + \frac{1}{x^2}\)[/tex]

Let's find the square form:
[tex]\[ x^2 + 2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \][/tex]

### Part i)
Expression: [tex]\(4p^2 - 2 + \frac{1}{4p^2}\)[/tex]

Let's find the square form:
[tex]\[ 4p^2 - 2 + \frac{1}{4p^2} = \left(2p - \frac{1}{2p}\right)^2 - 2 \][/tex]

By expressing the provided polynomials in square forms, we've simplified them to make it easier to identify their structure and potential solutions.