To find the volume of a solid right pyramid with a square base and a given height, we use the formula for the volume of a pyramid:
[tex]\[ V = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]
Given that the base of the pyramid is a square with an edge length of [tex]\( x \)[/tex] cm, the area of the square base can be calculated as:
[tex]\[ \text{Base Area} = x \times x = x^2 \, \text{square centimeters} \][/tex]
The height of the pyramid is given as [tex]\( y \)[/tex] cm. Substituting the base area and the height into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times x^2 \times y \, \text{cubic centimeters} \][/tex]
So, the expression that represents the volume of the pyramid is:
[tex]\[ \boxed{\frac{1}{3} x^2 y \, \text{cm}^3} \][/tex]