A solid right pyramid has a square base with an edge length of [tex]$x$[/tex] cm and a height of [tex]$y$[/tex] cm.

Which expression represents the volume of the pyramid?

A. [tex]\frac{1}{3} x y \, \text{cm}^3[/tex]
B. [tex]\frac{1}{3} x^2 y \, \text{cm}^3[/tex]
C. [tex]\frac{1}{2} x y^2 \, \text{cm}^3[/tex]
D. [tex]\frac{1}{2} x^2 y \, \text{cm}^3[/tex]



Answer :

To find the volume of a solid right pyramid with a square base and a given height, we use the formula for the volume of a pyramid:

[tex]\[ V = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]

Given that the base of the pyramid is a square with an edge length of [tex]\( x \)[/tex] cm, the area of the square base can be calculated as:

[tex]\[ \text{Base Area} = x \times x = x^2 \, \text{square centimeters} \][/tex]

The height of the pyramid is given as [tex]\( y \)[/tex] cm. Substituting the base area and the height into the volume formula, we get:

[tex]\[ V = \frac{1}{3} \times x^2 \times y \, \text{cubic centimeters} \][/tex]

So, the expression that represents the volume of the pyramid is:

[tex]\[ \boxed{\frac{1}{3} x^2 y \, \text{cm}^3} \][/tex]