Select the correct answer.

Factor the given expression.

[tex]\[ x^2 + 16x + 64 \][/tex]

A. [tex]\((x + 4)^2\)[/tex]

B. [tex]\((x + 16)(x + 4)\)[/tex]

C. [tex]\((x + 8)^2\)[/tex]

D. [tex]\((x + 8)(x - 8)\)[/tex]



Answer :

To factor the quadratic expression [tex]\( x^2 + 16x + 64 \)[/tex], we can follow these steps:

1. Identify the Coefficients:
The quadratic expression is of the form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 16 \)[/tex], and [tex]\( c = 64 \)[/tex].

2. Find the Pair of Numbers:
We need to find two numbers that multiply to [tex]\( ac \)[/tex] and add up to [tex]\( b \)[/tex]. Here, [tex]\( ac = 1 \cdot 64 = 64 \)[/tex] and [tex]\( b = 16 \)[/tex].

- The two numbers that multiply to 64 and add up to 16 are [tex]\( 8 \)[/tex] and [tex]\( 8 \)[/tex].

3. Rewrite the Middle Term:
We rewrite the expression by breaking the middle term (16x) into two terms, using the numbers we found:
[tex]\[ x^2 + 8x + 8x + 64 \][/tex]

4. Group and Factor by Grouping:
Group the terms in pairs and factor out the greatest common factor (GCF) from each pair:
[tex]\[ (x^2 + 8x) + (8x + 64) \][/tex]
Factor out the GCF from each group:
[tex]\[ x(x + 8) + 8(x + 8) \][/tex]

5. Factor Out the Common Binomial Factor:
Notice that [tex]\( (x + 8) \)[/tex] is a common binomial factor:
[tex]\[ (x + 8)(x + 8) \][/tex]

6. Write the Final Factored Form:
The expression can be written as:
[tex]\[ (x + 8)^2 \][/tex]

Therefore, the correct answer is:
C. [tex]\( (x + 8)^2 \)[/tex]