The oblique pyramid has a square base with an edge length of 5 cm. The height of the pyramid is 7 cm.

What is the volume of the pyramid?

A. [tex]11 \frac{2}{3} \, \text{cm}^3[/tex]
B. [tex]43 \frac{3}{4} \, \text{cm}^3[/tex]
C. [tex]58 \frac{1}{3} \, \text{cm}^3[/tex]
D. [tex]87 \frac{1}{2} \, \text{cm}^3[/tex]



Answer :

To find the volume of an oblique pyramid with a square base, we use the formula for the volume of a pyramid, which is:

[tex]\[ V = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]

First, we'll determine the area of the base. Since the pyramid has a square base, the area of the base ([tex]\( \text{base area} \)[/tex]) is given by:

[tex]\[ \text{base area} = \text{edge length}^2 \][/tex]

The edge length of the square base is 5 cm. Therefore:

[tex]\[ \text{base area} = 5 \, \text{cm} \times 5 \, \text{cm} = 25 \, \text{cm}^2 \][/tex]

Next, we use the height of the pyramid in the volume formula. The height of the pyramid is given as 7 cm. Plugging in the values for the base area and the height into the volume formula:

[tex]\[ V = \frac{1}{3} \times 25 \, \text{cm}^2 \times 7 \, \text{cm} \][/tex]

Now we calculate the volume step-by-step:

[tex]\[ V = \frac{1}{3} \times 25 \times 7 \][/tex]

[tex]\[ V = \frac{1}{3} \times 175 \][/tex]

[tex]\[ V = \frac{175}{3} \][/tex]

When you divide 175 by 3, you get:

[tex]\[ V = 58 \frac{1}{3} \, \text{cm}^3 \][/tex]

So, the volume of the pyramid is:

[tex]\[ 58 \frac{1}{3} \, \text{cm}^3 \][/tex]

The correct answer is:

[tex]\[ 58 \frac{1}{3} \, \text{cm}^3 \][/tex]