Use the equation [tex]y=\sqrt[3]{27x-54}+5[/tex].

Which is an equivalent equation of the form [tex]y=a \sqrt[3]{x-h}+k[/tex]?

A. [tex]y=-27 \sqrt[3]{x+2}+5[/tex]
B. [tex]y=-3 \sqrt[3]{x+2}+5[/tex]
C. [tex]y=3 \sqrt[3]{x-2}+5[/tex]
D. [tex]y=27 \sqrt[3]{x-2}+5[/tex]



Answer :

Let's start with the given equation:

[tex]\[ y = \sqrt[3]{27x - 54} + 5 \][/tex]

We are asked to rewrite this equation in the form:

[tex]\[ y = a \sqrt[3]{x - h} + k \][/tex]

In order to reach this form, we need to manipulate the expression inside the cube root:

1. First, let's factor out 27 from the expression inside the cube root:

[tex]\[ \sqrt[3]{27x - 54} \][/tex]

2. Recognize that [tex]\(54 = 27 \times 2\)[/tex], so the expression can be rewritten as:

[tex]\[ \sqrt[3]{27(x - 2)} \][/tex]

3. Since [tex]\(27 = 3^3\)[/tex], we use the property of cube roots [tex]\(\sqrt[3]{a \times b} = \sqrt[3]{a} \times \sqrt[3]{b}\)[/tex] to simplify:

[tex]\[ \sqrt[3]{27(x - 2)} = \sqrt[3]{3^3 \cdot (x - 2)} = 3 \sqrt[3]{x - 2} \][/tex]

Thus, the equation is now:

[tex]\[ y = 3 \sqrt[3]{x - 2} + 5 \][/tex]

Our goal was to rewrite the original equation in the form [tex]\( y = a \sqrt[3]{x - h} + k \)[/tex]. Comparing:

[tex]\[ y = 3 \sqrt[3]{x - 2} + 5 \][/tex]
with
[tex]\[ y = a \sqrt[3]{x - h} + k \][/tex]

we identify that:

- [tex]\(a = 3\)[/tex]
- [tex]\(h = 2\)[/tex]
- [tex]\(k = 5\)[/tex]

Now, let’s check which of the given options match this form:

1. [tex]\( y = -27 \sqrt[3]{x + 2} + 5 \)[/tex]
2. [tex]\( y = -3 \sqrt[3]{x + 2} + 5 \)[/tex]
3. [tex]\( y = 3 \sqrt[3]{x - 2} + 5 \)[/tex]
4. [tex]\( y = 27 \sqrt[3]{x - 2} + 5 \)[/tex]

The correct equivalent equation is:

[tex]\[ y = 3 \sqrt[3]{x - 2} + 5 \][/tex]

Therefore, the correct option is:

[tex]\[ \boxed{3} \][/tex]