Select the correct answer.

Simplify [tex] \sqrt{80} [/tex].

A. [tex] 16 \sqrt{5} [/tex]
B. [tex] 5 \sqrt{4} [/tex]
C. [tex] 4 \sqrt{5} [/tex]
D. [tex] 20 \sqrt{4} [/tex]



Answer :

To simplify the expression [tex]\(\sqrt{80}\)[/tex], let's follow these steps:

1. Factor 80 into its prime factors:

[tex]\( 80 = 16 \times 5 \)[/tex]

2. Rewrite the square root of the product:

[tex]\[ \sqrt{80} = \sqrt{16 \times 5} \][/tex]

3. Use the property of square roots that states [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex]:

[tex]\[ \sqrt{80} = \sqrt{16} \times \sqrt{5} \][/tex]

4. Find the square root of 16:

[tex]\[ \sqrt{16} = 4 \][/tex]

5. Combine the results:

[tex]\[ \sqrt{80} = 4 \times \sqrt{5} \][/tex]

6. Simplified form:

[tex]\[ \sqrt{80} = 4 \sqrt{5} \][/tex]

Therefore, the correct answer is:

C. [tex]\(4 \sqrt{5}\)[/tex]