To determine the impedance [tex]\( Z \)[/tex] of a single-phase inductive circuit, we use Ohm's Law for AC circuits. The formula for impedance in this context is:
[tex]\[ Z = \frac{V}{I} \][/tex]
where:
- [tex]\( V \)[/tex] is the voltage,
- [tex]\( I \)[/tex] is the current.
Given:
- Voltage [tex]\( V = 240 \)[/tex] volts,
- Current [tex]\( I = 10 \)[/tex] amps.
Substitute the given values into the formula:
[tex]\[ Z = \frac{240 \, \text{V}}{10 \, \text{A}} \][/tex]
Simplify the fraction:
[tex]\[ Z = 24 \, \Omega \][/tex]
Therefore, the impedance of the circuit is [tex]\( 24 \, \Omega \)[/tex].
As per the provided options:
A. [tex]$10 A / 240 V=0.042 \Omega$[/tex]
B. [tex]$240 V / 10 A=24 \Omega$[/tex]
C. [tex]$240 V \times 10 A=2,400 \Omega$[/tex]
D. Impedance cannot be calculated using only volts and amps.
The correct answer is:
B. [tex]\(240 \, V / 10 \, A = 24 \, \Omega\)[/tex] impedance.