Answered

1. If the base is 4, what is the value if the exponent is [tex]$2?$[/tex] What if the exponent is [tex][tex]$-2?$[/tex][/tex]

A. 16, -16
B. [tex]16, \frac{1}{16}[/tex]
C. 8, -8
D. [tex]8, \frac{1}{8}[/tex]



Answer :

Certainly! Let's solve the problem step-by-step.

1. If the base is 4, what is the value if the exponent is 2?

To find the value, we use the formula for exponents:
[tex]\[ \text{base}^{\text{exponent}} \][/tex]

So, for a base of 4 and an exponent of 2:
[tex]\[ 4^2 = 4 \times 4 = 16 \][/tex]

Thus, when the exponent is 2, the value is [tex]\(16\)[/tex].

2. What is the value if the exponent is -2?

Negative exponents indicate that we should take the reciprocal of the base raised to the positive exponent. The formula for a negative exponent [tex]\(n\)[/tex] is:
[tex]\[ \text{base}^{-\text{exponent}} = \frac{1}{\text{base}^{\text{exponent}}} \][/tex]

So, for a base of 4 and an exponent of -2:
[tex]\[ 4^{-2} = \frac{1}{4^2} = \frac{1}{16} = 0.0625 \][/tex]

Thus, when the exponent is -2, the value is [tex]\(0.0625\)[/tex].

Summarizing the results:
- For an exponent of 2, the value is [tex]\(16\)[/tex].
- For an exponent of -2, the value is [tex]\(0.0625\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{16, \frac{1}{16}} \][/tex]

Other Questions