Answered

12. Which of the following terms can be added to [tex]$8b^2c$[/tex]?

A. [tex]$10 \cdot 6$[/tex]
B. [tex][tex]$7c^2$[/tex][/tex]
C. [tex]$8x$[/tex]
D. [tex]$8b^2c^2$[/tex]



Answer :

Let's analyze each term to determine whether it can be simplified to [tex]\( 8b^2c \)[/tex].

1. Term: [tex]\( 10 \cdot 6 \)[/tex]

[tex]\[ 10 \cdot 6 = 60 \][/tex]

This term simplifies to 60, which is just a constant and does not involve the variables [tex]\( b \)[/tex] or [tex]\( c \)[/tex]. Therefore, this term cannot be simplified to [tex]\( 8b^2c \)[/tex].

2. Term: [tex]\( 7c^2 \)[/tex]

This term is composed of the constant 7 and [tex]\( c^2 \)[/tex]. To match [tex]\( 8b^2c \)[/tex], we need both [tex]\( b^2 \)[/tex] and [tex]\( c \)[/tex] as factors, but this term is missing [tex]\( b^2 \)[/tex] and has [tex]\( c^2 \)[/tex] instead of [tex]\( c \)[/tex]. Therefore, this term cannot be simplified to [tex]\( 8b^2c \)[/tex].

3. Term: [tex]\( 8x \)[/tex]

This term has the constant 8 and variable [tex]\( x \)[/tex]. For the term to match [tex]\( 8b^2c \)[/tex], we need [tex]\( b^2 \)[/tex] and [tex]\( c \)[/tex], but this term does not contain either [tex]\( b \)[/tex] or [tex]\( c \)[/tex]. Therefore, this term cannot be simplified to [tex]\( 8b^2c \)[/tex].

4. Term: [tex]\( 8b^2c^2 \)[/tex]

This term has the constant 8 and the variables [tex]\( b^2c^2 \)[/tex]. To match [tex]\( 8b^2c \)[/tex], we need [tex]\( 8b^2c \)[/tex]. However, this term contains [tex]\( c^2 \)[/tex] instead of [tex]\( c \)[/tex]. Simplifying [tex]\( c^2 \)[/tex] to [tex]\( c \)[/tex] is not possible directly through algebraic manipulation. Therefore, this term cannot be simplified to [tex]\( 8b^2c \)[/tex].

After analyzing each term, none of the given terms can be simplified to [tex]\( 8b^2c \)[/tex].

Thus, none of the terms listed [tex]\( \left(10 \cdot 6, 7c^2, 8x, 8b^2c^2\right) \)[/tex] match or simplify to [tex]\( 8b^2c \)[/tex].