Answer :
To solve this problem, we first need to find the decay constant [tex]\( k \)[/tex] using the information provided.
We know:
- Room temperature [tex]\( T_a = 72^{\circ} F \)[/tex]
- Initial temperature of the turkey [tex]\( T_0 = 38^{\circ} F \)[/tex]
- Temperature after 15 minutes [tex]\( T = 47^{\circ} F \)[/tex]
- Time [tex]\( t = 15 \)[/tex] minutes
Using the formula for Newton's Law of Heating:
[tex]\[ T = T_a + (T_0 - T_a) \exp(-kt) \][/tex]
Substitute the given values into the formula:
[tex]\[ 47 = 72 + (38 - 72) \exp(-15k) \][/tex]
Simplify the equation:
[tex]\[ 47 = 72 - 34 \exp(-15k) \][/tex]
Rearrange to solve for [tex]\( \exp(-15k) \)[/tex]:
[tex]\[ 47 - 72 = -34 \exp(-15k) \][/tex]
[tex]\[ -25 = -34 \exp(-15k) \][/tex]
[tex]\[ \exp(-15k) = \frac{25}{34} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ -15k = \ln\left(\frac{25}{34}\right) \][/tex]
[tex]\[ k = -\frac{1}{15} \ln\left(\frac{25}{34}\right) \][/tex]
Calculate the value of [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.02 - 2.094i \][/tex]
Now, use this [tex]\( k \)[/tex] value to find the temperature of the turkey after 120 minutes:
[tex]\[ T = 72 + (38 - 72) \exp(-120k) \][/tex]
Substitute the values:
[tex]\[ T = 72 + (38 - 72) \exp(-120 \times (0.02 - 2.094i)) \][/tex]
The temperature after 120 minutes (to the nearest degree) is:
[tex]\[ T \approx 69^{\circ} F \][/tex]
So, the final temperature of the turkey after 120 minutes is:
[tex]\[ \boxed{69} \][/tex]
We know:
- Room temperature [tex]\( T_a = 72^{\circ} F \)[/tex]
- Initial temperature of the turkey [tex]\( T_0 = 38^{\circ} F \)[/tex]
- Temperature after 15 minutes [tex]\( T = 47^{\circ} F \)[/tex]
- Time [tex]\( t = 15 \)[/tex] minutes
Using the formula for Newton's Law of Heating:
[tex]\[ T = T_a + (T_0 - T_a) \exp(-kt) \][/tex]
Substitute the given values into the formula:
[tex]\[ 47 = 72 + (38 - 72) \exp(-15k) \][/tex]
Simplify the equation:
[tex]\[ 47 = 72 - 34 \exp(-15k) \][/tex]
Rearrange to solve for [tex]\( \exp(-15k) \)[/tex]:
[tex]\[ 47 - 72 = -34 \exp(-15k) \][/tex]
[tex]\[ -25 = -34 \exp(-15k) \][/tex]
[tex]\[ \exp(-15k) = \frac{25}{34} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ -15k = \ln\left(\frac{25}{34}\right) \][/tex]
[tex]\[ k = -\frac{1}{15} \ln\left(\frac{25}{34}\right) \][/tex]
Calculate the value of [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.02 - 2.094i \][/tex]
Now, use this [tex]\( k \)[/tex] value to find the temperature of the turkey after 120 minutes:
[tex]\[ T = 72 + (38 - 72) \exp(-120k) \][/tex]
Substitute the values:
[tex]\[ T = 72 + (38 - 72) \exp(-120 \times (0.02 - 2.094i)) \][/tex]
The temperature after 120 minutes (to the nearest degree) is:
[tex]\[ T \approx 69^{\circ} F \][/tex]
So, the final temperature of the turkey after 120 minutes is:
[tex]\[ \boxed{69} \][/tex]