Certainly! Let’s solve the given questions step-by-step.
We are given the function [tex]\( T = 18h + 250 \)[/tex] and asked to determine the values of [tex]\( T \)[/tex] for specific values of [tex]\( h \)[/tex].
### (a) Find [tex]\( T \)[/tex] when [tex]\( h = 2 \)[/tex].
1. Substitute [tex]\( h = 2 \)[/tex] into the function [tex]\( T \)[/tex].
[tex]\[ T = 18 \cdot 2 + 250 \][/tex]
2. Perform the multiplication first.
[tex]\[ T = 36 + 250 \][/tex]
3. Add the results from step 2.
[tex]\[ T = 286 \][/tex]
So, when [tex]\( h = 2 \)[/tex], [tex]\( T = 286 \)[/tex].
### (b) Find [tex]\( T \)[/tex] when [tex]\( h = 8 \)[/tex].
1. Substitute [tex]\( h = 8 \)[/tex] into the function [tex]\( T \)[/tex].
[tex]\[ T = 18 \cdot 8 + 250 \][/tex]
2. Perform the multiplication first.
[tex]\[ T = 144 + 250 \][/tex]
3. Add the results from step 2.
[tex]\[ T = 394 \][/tex]
So, when [tex]\( h = 8 \)[/tex], [tex]\( T = 394 \)[/tex].
### Summary:
- When [tex]\( h = 2 \)[/tex], [tex]\( T = 286 \)[/tex].
- When [tex]\( h = 8 \)[/tex], [tex]\( T = 394 \)[/tex].