If the third quartile of a continuous series is 25 and the quartile deviation is [tex]\frac{13}{2}[/tex], find the coefficient of quartile deviation.



Answer :

Let's solve the problem step-by-step:

1. Given Information:
- Third Quartile (Q3): 25
- Quartile Deviation (QD): [tex]\( \frac{13}{2} \)[/tex]

2. Purpose:
- We need to find the coefficient of quartile deviation.

3. Relevant Formulas:
- Quartile Deviation (QD) is defined as:
[tex]\[ QD = \frac{Q3 - Q1}{2} \][/tex]
- Coefficient of Quartile Deviation (CQD) is given by:
[tex]\[ CQD = \frac{Q3 - Q1}{Q3 + Q1} \][/tex]

4. Steps to Solve:

- Firstly, the quartile deviation is given by:
[tex]\[ QD = \frac{13}{2} = 6.5 \][/tex]

- From the given quartile deviation, we can find the first quartile (Q1). Knowing that:
[tex]\[ QD = \frac{Q3 - Q1}{2} \][/tex]
Hence:
[tex]\[ 6.5 = \frac{25 - Q1}{2} \][/tex]

- Multiply both sides by 2 to solve for [tex]\( Q1 \)[/tex]:
[tex]\[ 13 = 25 - Q1 \][/tex]

- Isolate [tex]\( Q1 \)[/tex]:
[tex]\[ Q1 = 25 - 13 \][/tex]
[tex]\[ Q1 = 12 \][/tex]

- Now that we have both [tex]\( Q1 \)[/tex] and [tex]\( Q3 \)[/tex], we can calculate the coefficient of quartile deviation (CQD):
[tex]\[ CQD = \frac{Q3 - Q1}{Q3 + Q1} \][/tex]
Substituting the values:
[tex]\[ CQD = \frac{25 - 12}{25 + 12} \][/tex]
[tex]\[ CQD = \frac{13}{37} \][/tex]
[tex]\[ CQD \approx 0.17567567567567569 \][/tex]

5. Summary:
- The first quartile Q1 is: 12.0
- The coefficient of quartile deviation is: 0.17567567567567569

This is the detailed solution to find the first quartile and the coefficient of quartile deviation.