Which equation shows the point-slope form of the line that passes through [tex]\((3,2)\)[/tex] and has a slope of [tex]\(\frac{1}{3}\)[/tex]?

A. [tex]\(y + 2 = \frac{1}{3}(x + 3)\)[/tex]
B. [tex]\(y - 2 = \frac{1}{3}(x - 3)\)[/tex]
C. [tex]\(y + 3 = \frac{1}{3}(x + 2)\)[/tex]
D. [tex]\(y - 3 = \frac{1}{3}(x - 2)\)[/tex]



Answer :

To find the point-slope form of the line passing through the point [tex]\((3, 2)\)[/tex] with a slope of [tex]\(\frac{1}{3}\)[/tex], we use the point-slope formula for a line, which is:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

Here, [tex]\( (x_1, y_1) \)[/tex] represents the coordinates of the given point, and [tex]\( m \)[/tex] represents the slope of the line.

Given:
[tex]\[ x_1 = 3, \][/tex]
[tex]\[ y_1 = 2, \][/tex]
[tex]\[ m = \frac{1}{3} \][/tex]

We substitute these values into the point-slope formula:

[tex]\[ y - 2 = \frac{1}{3}(x - 3) \][/tex]

This is the equation of the line in point-slope form.

Now, let's match this equation with the given choices:

1. [tex]\( y + 2 = \frac{1}{3}(x + 3) \)[/tex]
2. [tex]\( y - 2 = \frac{1}{3}(x - 3) \)[/tex]
3. [tex]\( y + 3 = \frac{1}{3}(x + 2) \)[/tex]
4. [tex]\( y - 3 = \frac{1}{3}(x - 2) \)[/tex]

From our analysis:

The correct equation from the given choices is:

[tex]\[ y - 2 = \frac{1}{3}(x - 3) \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{2} \][/tex]