Answer :

Sure, let's solve the system of equations step by step.

Given the system:
[tex]\[ \left\{ \begin{array}{l} 5x + 6x = 20 \\ 4x - 3y = -23 \end{array} \right. \][/tex]

Step 1: Simplify the first equation.
[tex]\[ 5x + 6x = 11x \][/tex]
Thus, the first equation becomes:
[tex]\[ 11x = 20 \][/tex]

Step 2: Solve for [tex]\( x \)[/tex].
[tex]\[ x = \frac{20}{11} \][/tex]
So, we have:
[tex]\[ x = 1.8181818181818181 \][/tex]

Step 3: Substitute [tex]\( x \)[/tex] into the second equation.
The second equation is:
[tex]\[ 4x - 3y = -23 \][/tex]
Substitute [tex]\( x = 1.8181818181818181 \)[/tex]:
[tex]\[ 4(1.8181818181818181) - 3y = -23 \][/tex]
Calculate [tex]\( 4 \times 1.8181818181818181 \)[/tex]:
[tex]\[ 4 \times 1.8181818181818181 = 7.2727272727272725 \][/tex]
Thus, the equation becomes:
[tex]\[ 7.2727272727272725 - 3y = -23 \][/tex]

Step 4: Solve for [tex]\( y \)[/tex].
First, isolate the [tex]\( y \)[/tex]-term:
[tex]\[ -3y = -23 - 7.2727272727272725 \][/tex]
Calculate [tex]\( -23 - 7.2727272727272725 \)[/tex]:
[tex]\[ -23 - 7.2727272727272725 = -30.27272727272727 \][/tex]
Thus:
[tex]\[ -3y = -30.27272727272727 \][/tex]

Now, divide both sides by [tex]\(-3\)[/tex]:
[tex]\[ y = \frac{-30.27272727272727}{-3} \][/tex]
[tex]\[ y = 10.090909090909092 \][/tex]

The solution to the system of equations is:
[tex]\[ x = 1.8181818181818181 \][/tex]
[tex]\[ y = 10.090909090909092 \][/tex]

Other Questions