Select the correct answer from each drop-down menu.

Consider this expression.
[tex]\[ 7m^2 + (2m - 1)(m + 9) \][/tex]

What expression is equivalent to the given expression?
[tex]\[ \square m^2 + \square m + \square \][/tex]



Answer :

Let's start by breaking down and expanding the given expression to reach an equivalent expression:

Given:
[tex]\[ 7m^2 + (2m - 1)(m + 9) \][/tex]

First, we need to expand the product [tex]\((2m - 1)(m + 9)\)[/tex]:

[tex]\[ (2m - 1)(m + 9) = 2m \cdot m + 2m \cdot 9 - 1 \cdot m - 1 \cdot 9 \][/tex]

This multiplication results in:
[tex]\[ 2m^2 + 18m - m - 9 \][/tex]

Now, combine the like terms:
[tex]\[ 2m^2 + 17m - 9 \][/tex]

Next, add this expanded expression to the original term [tex]\(7m^2\)[/tex]:
[tex]\[ 7m^2 + 2m^2 + 17m - 9 \][/tex]

Combine the [tex]\(m^2\)[/tex] terms:
[tex]\[ (7m^2 + 2m^2) + 17m - 9 = 9m^2 + 17m - 9 \][/tex]

Therefore, the equivalent expression is:
[tex]\[ 9m^2 + 17m - 9 \][/tex]

In the drop-down menus, the correct answers are:
[tex]\[ \boxed{9} \, m^2 + \boxed{17} \, m + \boxed{-9} \][/tex]